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INTRODUCTION

This paper provides an elementary treatment of linear algebra that is suitable

for students in their freshman or sophomore year. Calculus is not a prerequisite.

The aim in writing this paper is to present the fundamentals of linear alge-

bra in the clearest possible way. Pedagogy is the main consideration. Formalism

is secondary. Where possible, basic ideas are studied by means of computational

examples and geometrical interpretation.

The treatment of proofs varies. Those proofs that are elementary and hve sig-

nificant pedagogical content are presented precisely, in a style tailored for beginners.

A few proofs that are more difficult, but pedgogically valuable, are placed at the end

of of the section and marked “Optional”. Still other proofs are omitted completely,

with emphasis placed on applying the theorem.

Chapter 1 deals with systems of linear equations, how to solve them, and

some of their properties. It also contains the basic material on matrices and their

arithmetic properties.

Chapter 2 deals with determinants. I have used the classical permutation

approach. This is less abstract than the approach through n-linear alternative forms

and gives the student a better intuitive grasp of the subject than does an

inductive development.

Chapter 3 introduces vectors in 2-space and 3-space as arrows and develops the

analytic geometry of lines and planes in 3-space. Depending on the background of

the students, this chapter can be omitted without a loss of continuity.
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CHAPTER 1

SYSTEMS OF LINEAR EQUATIONS AND MATRICES

1.1 INTRODUCTIONS TO SYSTEMS OF LINEAR EQUATIONS

In this section we introduce base terminology and discuss a method for solving

systems of linear equations.

A line in the xy-plain can be represented algebraically by an equation of the

form

a1x + a2y = b

An equation of this kind is called a linear equation in the variables x and y. More

generally, we define a linear equation in the n variables x1, . . . , xn to be one that

can be expressed in the form

a1x1 + a2x2 + · · · + anxn = b (1.1)

where a1, a2, . . . an and b are real constants.

Definition. A finite set of linear equations in the variables x1, x2, . . . , xn is called

a system of linear equations.

Not all systems of linear equations has solutions. A system of equations that

has no solution is said to be inconsistent. If there is at least one solution, it is

called consistent. To illustrate the possibilities that can occur in solving systems of

linear equations, consider a general system of two linear equations in the unknowns

x and y:

a1x + b1y = c1

a2x + b2y = c2

2



The graphs of these equations are lines; call them l1 and l2. Since a point (x, y) lies

on a line if and only if the numbers x and y satisfy the equation of the line, the

solutions of the system of equations will correspond to points of intersection of l1

and l2. There are three possibilities:

D
D
D
D
D
D
DD

D
D
D
D
D
D
DD

l1 l2

(a)

�
�

�
�

�
�

��

D
D
D
D
D
D
DD
l1 l2

(b)

�
�
�
�
�
�
��

l1, l2

(c)

Figure 1.1. (a) no solution, (b) one solution, (c) infinitely many solutions

The three possiblities illustrated in Figure 1.1 are as follows:

(a) l1 and l2 are parallel, in which case there is no intersection, and consequently

no solution to the system.

(b) l1 and l2 intersect at only one point, in which case the system has exactly one

solution.
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(c) l1 and l2 coincide, in which case there are infinitely many points of intersection,

and consequently infinitely many solutions to the system.

Although we have considered only two equations with two unknowns here, we

will show later that this same result holds for arbitrary systems; that is, every system

of linear equations has either no solutions, exactly one solution, or infinitely many

solutions.

1.2 GAUSSIAN ELIMINATION

In this section we give a systematic procedure for solving systems of linear

equations; it is based on the idea of reducing the augmented matrix to a form that

is simple enough so that the system of equations can be solved by inspection.

Remark. It is not difficult to see that a matrix in row-echelon form must have zeros

below each leading 1. In contrast a matrix in reduced row-echelon form must have

zeros above and below each leading 1.

As a direct result of Figure 1.1 on page 3 we have the following important

theorem.

Theorem 1.2.1. A homogenous system of linear equations with more unknowns

than equations always has infinitely many solutions

The definition of matrix multiplication requires that the number of columns of

the first factor A be the same as the number of rows of the second factor B in order

to form the product AB. If this condition is not satisfied, the product is undefined.

A convenient way to determine whether a product of two matrices is defined is to

write down the size of the first factor and, to the right of it, write down the size of

the second factor. If, as in Figure 1.2, the inside numbers are the same, then the

product is defined. The outside numbers then give the size of the product.

4



m × r

A

r × n

B

= m × n

AB

outside

inside

Figure 1.2. Inside and outside numbers of a matrix multiplica-
tion problem of A×B = AB, showing how the inside dimensions
are dropped and the dimensions of the product are the outside
dimenions.

Although the commutative law for multiplication is not valid in matrix arith-

metic, many familiar laws of arithmetic are valid for matrices. Some of the most

important ones and their names are summarized in the following proposition.

Proposition 1.2.2. Assuming that the sizes of the matrices are such that the in-

dicated operations can be performed, the following rules of matrix arithmetic are

valid.

(a) A + B = B + A (Commutative law for addition)

(b) A + (B + C) = (A + B) + C (Associative law for addition)

(c) A(BC) = (AB)C (Associative law for multiplication)

1.3 FURTHER RESULTS ON SYSTEMS OF EQUATIONS

In this section we shall establish more results about systems of linear equations

and invertibility of matrices. Our work will lead to a method for solving n equations

in n unknowns that is more efficient than Gaussian elimination for certain kinds of

problems.
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1.3.1 Some Important Theorems

Theorem 1.3.1. If A is an invertible n × n matrix, then for each n × 1 matrix B,

the system of equations AX = B has exactly one solution, namely, X = A−1B.

Proof. Since A(A−1B) = B, X = A−1B is a solution of AX = B. To show that this

is the only solution, we will assume that X0 is an arbitrary solution, and then show

that X0 must be the solution A−1B.

If X0 is any solution, then AX0 = B. Multiplying both sides by A−1, we obtain

X0 = A−1B.

Theorem 1.3.2. Let A be a square matrix.

(a) If B is a square matrix satisfying BA = I,then B = A−1.

(b) If B is a square matrix satisfying AB = I, then B = A−1.

In our later work the following fundamental problem will occur over and over

again in various contexts.

Let A be fixed m× n matrix. Find all m× 1 matrices B such that the system

of equations AX = B is consistent.

If A is an invertible matrix, Theorem 1.3.2 completely solves this problem by

asserting that for every m×n matrix B, AX = B has the unique solution X = A−1B.

6



CHAPTER 2

DETERMINANTS

2.1 THE DETERMINANT FUNCTION

We are all familiar with functions lilke f(x) = sin x and f(x) = x2, which

associate a real number f(x) with a real value of the variable x. Since both x

and f(x) assume only real values, such functions can be described as real-valued

functions of a matrix variable, that is, functions that associate a real number f(X)

with a matrix X.

Before we shall be able to define the determinant function, it will be necessary

to establish some results concerning permutations.

Definition. A permutation of the set of integers {1, 2, . . . , n} is an arrangement of

these integers in some order without ommissions or repetitions.

Example 2.1.1. There are six different permutations of the set of integers {1, 2, 3}.

These are

(1, 2, 3)(2, 1, 3)(3, 1, 2) (2.1)

(1, 3, 2)(2, 3, 1)(3, 2, 1) (2.2)

One convenient method of systematically listing permutations is to use a per-

mutation tree. This method will be illustrated in our next example.

Example 2.1.2. List all permutations of the set of integers {1, 2, 3, 4}

Solution. By drawing a permutation tree with each branch representing all four

numbers, we see that there are a total of 24 possible permutations.
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2.2 EVALUATING DETERMINANTS BY ROW REDUCTION

In this section we show that the determinant of a matrix can be evaluated by re-

ducing the matrix to row-echelon form. This method is of importance since it avoids

the lengthy computations involved directly applying the determinant definition.

We first consider two class of matrices whose determinants can be easily eval-

uated, regardless of the size of the matrix.

Theorem 2.2.1. If A is any square matrix that contains a row of zeros, then

det(A) = 0.

Theorem 2.2.2. If A is an n × n triangular matrix, then det(A) is the product of

the entries on the main diagonal; that is det(A) = a11a22 · · · amn.

Example 2.2.1. Evaluate det(A) where

A =









1 2

3 4









(2.3)

2.2.1 Some Final Conclusions

It should be evident from the examples in this section that whenever a square

matrix has two proportional rows (like the first and second rows of A), it is possible

to introduce a row of zeros by adding a suitable mutliple of one of these rows to the

other. Thus, if a square matrix has two proportional rows, its determinant is zero.

In the next section we consider some examples of linear algebra functions ex-

pressed in table form – primarily to see the list of tables command works in Latex.

2.3 PROPERTIES OF THE DETERMINANT FUNCTION

In this section we develop some of the fundamental properties of the determi-

nant function. our work here will give us some further insight into the relationship
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between a square matrix and its determinant. One of the immediate consequences of

this material will be an important determinant test for the invertibility of a matrix

Consider Table 2.1 and its implications in the area of linear algebra.

Function 1 2 3

Value 2.45 34.12 1.00

Determinant 0 0 0

Inverse 1 1 1

Table 2.1. An example table showing how centering works with
extended captioning.

It should be evident from the examples in this section that whenever a square

matrix has two proportional rows (like the first and second rows of A), it is possible
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to introduce a row of zeros by adding a suitable mutliple of one of these rows to the

other. Thus, if a square matrix has two proportional rows, its determinant is zero.

We hope this has given some insights into the basics of linear algebra and its

impact on the world around us. We leave you now with two encapsulated postscript

graphs which illustrate the main points discussed in this paper.

Figure 2.1. An encapsulated postscript file.

-1

-0.5

0

0.5

1

-10 -5 5 10
t

Figure 2.2. A second encapsulated postscript file.
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CHAPTER 3

EXAMPLES

Some examples of the definitions found in the file ps-defs.tex follow below.

Here are examples of how you can use equation numbers with multiple line

equations.

(f + (g + h))(a) = f(a) + (g + h)(a)

= f(a) + (g(a) + h(a)) (3.1)

= (f(a) + g(a)) + h(a)

= (f + g)(a) + h(a)

= ((f + g) + h)(a) (3.2)

(f + (g + h))(a) = f(a) + (g + h)(a)

= f(a) + (g(a) + h(a))

= (f(a) + g(a)) + h(a)

= (f + g)(a) + h(a)

= ((f + g) + h)(a)

(3.3)

(f + (g + h))(a) = f(a) + (g + h)(a)

= f(a) + (g(a) + h(a))

= (f(a) + g(a)) + h(a)

= (f + g)(a) + h(a)

= ((f + g) + h)(a)

11



Below is a figure which shows how to line up small figures on multiple lines.

The .dvi version is immediately below. The .pdf version may be found underneath

the complete figure and commented out. If you exchange the sections commented

out, then you can compile a .pdf file.

(a) (b)

(c)

Figure 3.1. Two rows of graphics: (a) Square (b) Circle (c) Rectangle
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Three figures across the page requires fairly small figures to fit within the Grad-

uate School margins.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.2. Three rows of graphics: (a)–(c) Squares. (d)–
(f) Circles. (g)–(i) Ovals.
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The verbatim environment can be useful when using data from a spreadsheet

as is done below.

X,TRUE_SUR,MSE SIM,MSE ZHAO,MSE JIAN,MSE PZHAO,MSE PJIAN

0.0 0.7520 0.03864 0.01407 0.01407 0.01180 0.01223

4.0 0.7273 0.04079 0.01675 0.01675 0.01479 0.01551

8.0 0.7035 0.04203 0.01923 0.01923 0.01675 0.01817

12.0 0.6524 0.04581 0.02157 0.02135 0.01932 0.02043

16.0 0.6029 0.05146 0.02345 0.02266 0.02304 0.02320

20.0 0.5551 0.05343 0.02498 0.02393 0.02627 0.02509

24.0 0.5089 0.05449 0.02677 0.02453 0.02936 0.02641

28.0 0.4641 0.05706 0.02901 0.02442 0.03315 0.02722

32.0 0.4209 0.05719 0.02910 0.02341 0.03558 0.02776

36.0 0.3790 0.05656 0.02974 0.02229 0.03745 0.02667

40.0 0.3385 0.05518 0.02940 0.02119 0.03864 0.02618

44.0 0.2994 0.05344 0.02989 0.02054 0.03928 0.02531

48.0 0.2615 0.04950 0.02803 0.01906 0.03855 0.02414

52.0 0.2249 0.04582 0.02712 0.01812 0.03849 0.02229

56.0 0.1895 0.04101 0.02454 0.01578 0.03632 0.01918

60.0 0.1552 0.03564 0.02282 0.01315 0.03372 0.01629

64.0 0.1220 0.03216 0.02124 0.00997 0.03188 0.01391

68.0 0.0900 0.02420 0.01730 0.00688 0.02551 0.01070

72.0 0.0590 0.01592 0.01254 0.00363 0.01811 0.00622

76.0 0.0290 0.00865 0.00838 0.00110 0.00886 0.00368

Figure 3.3. Use of verbatim environment

On the following page is an example of how to rotate text that is too long to

fit within the horizontal margins that are required.
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