<table>
<thead>
<tr>
<th>Course Number</th>
<th>CS 415</th>
<th>Course Title</th>
<th>Network Forensics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester Hours</td>
<td>3</td>
<td>Course Coordinator</td>
<td>Henry Hexmoor</td>
</tr>
<tr>
<td>Catalog Description</td>
<td>With the proliferation of wireless networks, security is at odds with privacy and integrity. The course provides a broad overview of security strategies for wireless networks. Topics will range from intrusion detection and network security protocols to collaborative computing. Contemporary tools and techniques for wireless network security are reviewed. A hands on project will be an integral part of this course.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Textbooks

References

- Campbell, R., et al., 2014-2016, Introduction to Digital Forensics, UIUC.

Course Learning Outcomes

- Obtain the state-of-the-art knowledge on network forensic methods including legal concerns
- Obtain basic skills in wired and wireless digital data transfer and analysis of digital media

Assessment of the Contribution to Student Outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessed</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Prerequisites by Topic

CS 410 or Graduate Standing
Major Topics Covered in the Course

1. Security of Existing Wireless Networks (10 Lectures)
 - Basics of Wireless networking Vulnerabilities (5 Lectures)
 - Basics of forensic investigation process (5 Lectures)

2. Network Intrusion Detection and Analysis and attacks (6 Lectures)

3. Analyzing Network Traffic (4 Lectures)

4. Packet Dissection Using TCPdump (4 Lectures)

5. Mitnick Attack (2 Lectures)

6. Cryptographic Algorithms (2 Lectures)

7. Game Theory for Wireless Networks (2 Lectures)

8. Neighbor Discovery (4 Lectures)

9. Shared Spectrum and Secure Protocols (6 Lectures)

Latest Revision: Summer 2020