Course Number	CS 553	Course Title	Formal Languages and Automata					
Semester Hours	3	Course	Chun-Hsi Huang					
		Coordinator						
		FA20						
Catalog	The Chomsky hierarchy of formal grammars and the corresponding classes of							
Description	automata. Turing machines and basic concepts of computability. Recursive and							
	recursively enumerable languages. Closure properties. Undecidable problems about							
	Turing machines and context-free languages. Deterministic context-free languages							
	and the construction of LR parsers.							
Textbooks								

_ - ----

References

Course Learning Outcomes

- To reinforce and extend the student's knowledge of the main results of language and automata theory
- To appreciate how the theory serves as a unifying framework for other areas of computer science
- To study one or more particular applications to other areas, such as the construction of parsers for programming languages

Assessment of the Contribution to Student Outcomes									
Outcome >	1	2	3	4	5	6	7		
Assessed →	X	X			X				

Prerequisites by Topic

CS 451

Major Topics Covered in the Course

1. Basic language and automata theory

Review of finite automata, regular sets, context-free grammars and languages {6 classes}

2. Turing Machines

Recursive languages, Turing acceptors, techniques for Turing machine construction,
Church's hypothesis, Turing machines as generators, variations and equivalence of Turing
machines {9 classes}

3. Undecidability

Universal Turing machines, undecidability of the halting problem, recursiveness and recursive enumerability, Post's correspondence problem, and undecidable problems about context-free languages {9 classes}

4. The Chomsky hierarchy

Grammars and their relation to automata, relations between classes of languages, LR(0) and LR(1) grammars, parser construction {8 classes}

5. Closure properties of families of languages

Abstract families of languages, language operations, closure and decidability properties {8 classes}

Latest Revision: Spring 2021