Course Number	CS 539	Course Title	Agents and Multiagent Systems						
Semester Hours	3	Course	Henry Hexmoor						
		Coordinator							
Catalog	This is an advanced treatment of fundamental concepts in the design of intelligent								
Description	autonomous agents and agent systems. Classic agent theories, architectures,								
	algorithms, and languages are discussed. An agent-based project is an integral part of								
	this course.								

Textbooks

SP17

Rothe, I. (2016). *Economics and Computation*. SV Publications. ISBN-9783662479032. Wilensky, U. (2015). *Intro to Agent Based Modeling*. MIT Publications. ISBN-9780262731898.

References

- K. Sycara, Multiagent Systems, AI 19 (2): Summer 1998, 1998, 79-92.
- Les Gasser and K. Kakugawa, MACE3J: Fast Flexible Distributed Simulation of Large, Large-Grain Multi-Agent Systems, In Proceedings of AAMAS-2002.
- M. J. Wooldridge and N. R. Jennings, "Software Engineering with Agents: Pitfalls and Pratfalls", IEEE Internet Computing 3 (3) 20-27, 1999.
- C. Sierra, N. Jennings, P. Noriega, S. Parsons (1998) "A framework for argumentation-based negotiation" in Intelligent Agents IV, M. P. Singh, A. Rao, and M. J. Wooldridge (eds.), Springer Verlag.
- J. S. Sichman and Y. Demazeau. Multi-Agent Systems Social Reasoning, in ICMASS 2000.
- T. Finin, R. Fritzson, D. McKay, R. McEntire (1994). "KQML as an Agent Communication Language", in Proceedings of the Third International Conference on Information and Knowledge Management, ACM Press.
- E. Durfee, (1991). Partial Global Planning: A Coordination framework for Distributed Hypothesis Formation, IEEE-SMC 21 (5).
- C. Harrison, D. Chess, A. Kershenbaum, 1995. Mobile Agents: Are they a good idea?, IBM Technical Report, online at: <u>http://www.research.ibm.com/massive/mobag.ps</u>.

CS 539	Agents and Multiagent Systems						Page 2			
Course Learning Outcomes										
• An understanding of the "agent" perspective on computational systems.										
• The	• The ability to analyze distributed systems in terms of key concepts such as openness,									
decentralization, autonomy, and organization.										
• A s	• A sense for the need to integrate multiple AI techniques when constructing intelligent agents.									
• The skills to design automation solutions using multiagent system techniques and agent										
frameworks.										
		Assessr	nent of the	Contributio	n to Student	t Outcomes				
Outcome -	•	1	2	3	<u>A</u>	5	6	7		
Assessed →	· · · · · · · · · · · · · · · · · · ·	X	X	5		5	0	,		
Prerequisites by Topic										
Restricted to graduate standing or consent of instructor.										
Major Topics Covered in the Course										
1. Introduction										
History: DAI, agents, MAS, system science, etc.										
Agents: AI agents, intelligence, rationality, autonomy, adaptivity, etc.										
Agent and system classifications: homogeneous vs. heterogeneous, Cooperative vs. self-										
interested, closed vs. open, etc.										
Examples applications {6 classes}										
2.	2. Agent Models and Architectures									
Reactive vs. deliberative agents										
Decision theoretic (rational and bounded rational agents)										
First order logic and deductive agents										
Modal epistemic logic (mental states, intentional stance, introspection)										
	BDI model and PRS									
	Process calculi {4 classes}									
3.	Distributed Problem Solving									
	Problem/task decomposition and allocation (e.g., contract net)									
	Task/result sharing									
	Coordination methods/mechanisms: multi-agent plans, GPGP, DEC-MDP, etc.									
	Distributed planning {5 classes}									

4. Multi-Agent Interactions (self-interested agents)

Game theory: pareto optimality, etc.

Auctions and bidding schemes

Voting schemes

Market schemes

Coalition formation

Negotiation and conflict resolution {9 classes}

5. Inter-Agent Communication

Agent languages: KQML, FIPA-ACL, etc.

Ontologies

Speech acts {3 classes}

6. Mobility and Open Systems

Mobile agents

Directory agents

Services and experts

Softbots and personal assistant agents {7 classes}

7. Organizations and Societies

Social and organizational structure

Artificial societies

Trust, reputation, commitment, etc. {2 classes}

8. Emergent Behavior

Biologically-inspired models

Simulations {2 classes}

Agent Development and Simulation Frameworks JADE, Zeus, NetLogo {2 classes}

Latest Revision: Spring 2021