Course Number	CS 503	Course Title	Fault-Tolerant Computing Systems					
Semester Hours	3	Course Coordinator	Bidyut Gupta					
Catalog	An introduction to different aspects of fault-tolerance in computing systems.							
Description	Redundancy techniques with an emphasis on information redundancy,							
	software fault-tolerance, coding techniques, algorithm-based fault-tolerance,							
	fault-tolerant interconnection network architecture, DFT techniques, and							
	quantitative evaluation methods.							
Textbooks								

References

Course Learning Outcomes

- To give the students an introduction to the different aspects of fault detection, diagnosis and tolerance in computer systems in general.
- To prepare the background such that students will be able to carry out further work in a more specialized fashion in any of these areas.

Assessment of the Contribution to Student Outcomes										
Outcome >	1	2	3	4	5	6	7			
Assessed →	X	X	X	X	X		X			

Prerequisites by Topic

CS 401.

Major Topics Covered in the Course

- 1. Introduction: Fault Characterization, reliability modeling, physical faults and fault models. {4 classes}
- 2. Test generation in digital systems: concepts, structural level and functional level test generation, random testing. {6 classes}
- 3. Design for testability: testability measures, scan techniques, testable networks, syndrome testability. {6 classes}
- 4. Fault Simulation: simulation models, algorithms for simulation and evaluation, parallel and deductive fault simulation. {6 classes}
- 5. Coding Techniques: parity check, unidirectional, arithmetic and communication codes and properties, self-checking circuits, fault-tolerant combinational and sequential machines. {6 classes}
- 6. System Diagnosis: Digraph models, diagnosability analysis and algorithms, distributed diagnosis. {6 classes}
- 7. Fault-tolerant VLSI based architectures: Interconnection networks, binary cube, graph networks, dynamic reconfiguration. {6 classes}

Latest Revision: Spring 2021