Course Number	CS 455	Cou	rse Title	Advanced A	lgorithm Do	esign and A	nalysis		
Semester Hours	3	Cou	rse	Banafsheh l	Rekabdar				
	-		rdinator SP20						
Catalog									
Description	An in-depth treatment of the design, analysis and complexity of algorithms with an emphasis on problem analysis and design techniques.								
Textbooks									
Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. (2009). <i>Introduction to Algorithms</i> . MIT Press, 3 rd Edition. ISBN: 9780262033848.									
References									
Course Learning Outcomes									
Deeper understanding of algorithm design.									
 Deeper understanding of algorithm design. To learn the design techniques for efficient algorithms. 									
 To learn the methods for analyzing the complexity of the algorithms. 									
 To design algorithms with an emphasis on proving the correctness and proving the optimality in terms of time efficiency. 									
 To learn the basic concepts of NP-completeness and approximation algorithms. 									
Assessment of the Contribution to Student Outcomes									
Outcome →	1	2	3	4	5	6	7		
Assessed →	X	X	X	X	X	X	X		
Prerequisites by Topic									
CS 330 with a grade of C or better or graduate standing.									

CS 45	5 Advanced Algorithm Design and Analysis	Page 2			
Major Topics Covered in the Course					
	Mathematical preliminaries: principles and examples of algorithm analysi relationships, worst case analysis {4 classes}	s, recurrence			
2.	Asymptotically tight bounds: lower/upper bounds for finding minimum and sorting analysis, growth rate of various functions {4 classes}	, lower bound			
3.	Divide-and-conquer: merge sort, quick sort, median selection, polynomial algorithm algorithms, shortest distance, fast Fourier transform (FFT) {8 classes}	ns, and matrix			
	Greedy algorithms: elements of the greedy strategy, minimum spanning tree, short of optimality{5 classes}	est path, proof			
5.	Advanced graph algorithms: bi-connected components, strongly connected com algorithms {5 classes}	ponents, flow			
6.	Dynamic programming: optimal secondary structure prediction, optimal search trees string matching, Floyd's algorithm {6 classes}	s, approximate			
7.	NP-completeness and approximation algorithms {4 classes}				
8.	PRAM algorithms {4 classes}				
	When course is taken as 500-level credit (CS 591 "Special Topics"), t nal requirements such as a research project.	here will be			

Latest Revision: Fall 2020