Course Number	CS 416	Course Title	Compiler Construction						
Semester Hours	3	Course Coordinator	Khaled Ahmed						
		SP20							
Catalog Description	Introduction to compiler construction. Design of a simple complete compiler, including lexical analysis, syntactical analysis, type checking, and code generation.								

Textbooks

Aho, A., Sethi, R., & Ullman, J. (2007). *Compilers: Principles, Techniques and Tools*. Addison-Wesley, 2nd Edition. ISBN: 9780321486813.

References

Tremblay, J. P. & Sorenson, P. G. (1985). The Theory and Practice of Compiler Writing. McGraw-Hill.

Course Learning Outcomes

• To learn the principles of compiler design and implementation.

Assessment of the Contribution to Student Outcomes SP 20										
Outcome →	1	2	3	4	5	6	7			
Assessed →	X	X	X	X			X			

Prerequisites by Topic

CS 306 and 311 each with a grade of *C* or better or graduate standing.

Major Topics Covered in the Course

- 1. Basic ideas: phases of a compiler, compiler construction tools {2 classes}
- 2. Language and grammars: basic concepts, classification of grammars (type 0, 1, 2, and 3), reduced grammars and extended BNF notations, regular expressions {4 classes}
- 3. A simple one-pass compiler: syntax definition, scanner, parsing, syntax directed translation, symbol tables, semantics and code generation {3 classes}
- 4. Lexical analysis: regular expressions, finite state acceptors, conversion algorithms, token specification, scanner generator (LEX) {6 classes}
- 5. Syntax analysis: top down parsing, recursive descent and predictive parsers, LL(1) grammars, bottom-up parsing, simple and operator precedence grammars, simple LR parsing, introduction to LALR and canonical LR parsing {6 classes}
- 6. Type checking: a simple type checker, type conversions {3 classes}
- 7. Symbol tables: symbol table organization for both block structured and non block structured languages {3 classes}
- 8. Run-time storage organization: dynamic storage allocation strategies, access to nonlocal names, parameter passing, heap storage {4 classes}
- 9. Intermediate codes: intermediate languages, quadruples {3 classes}
- 10. Code generation: issues in code design, target machine, register allocation, simple code generator {6 classes}

NOTE: When course is taken as 500-level credit (CS 591 "Special Topics"), there will be additional requirements such as a research project.

Latest Revision: Fall 2020