Course Number	CS 408	Course Title	Applied Cryp	otography				
Semester Hours	3	Course Coordinator	Bidyut Gupta					
Catalog Description	This course is a comprehensive introduction to modern cryptography, with an emphasis on the application and implementation of various techniques for achieving message confidentiality, integrity, authentication and non-repudiation. Applications to Internet security and electronic commerce will be discussed. All background mathematics will be covered in the course.							
Textbooks								
Stallings, William. (2017). Cryptography & Network Security. Pearson, 7th Edition. ISBN: 780134444284.								
References								
Course Learning Outcomes								
 To understand the design principles of modern cryptographic algorithms. To learn a variety of cryptanalytic and side-channel attacks. To understand how cryptography is deployed in practice, with an emphasis on its application in network security. To learn how to implement cryptographic algorithms with symbolic computation software. 								
	Assessment of the Contribution to Student Outcomes							
Outcome →	1	2 3	4	5	6	7		
Assessed \rightarrow	X	X X	X	Х	Х			
Prerequisites by Topic								
CS 330 with a grade of C or better and MATH 221 or graduate standing.								

CS 40	8 Applied Cryptography	Page 2				
	Major Topics Covered in the Course					
	Symmetric-key encryption: classical ciphers, one-time pad, stream ciphers (RC4), Feis DES, AES, modes of operation {8 classes}	stel networks,				
2.	Message integrity: hash functions, Merkle's Meta method, parallel collision sea authentication codes (CBC-MAC, HMAC) {5 classes}	rch, message				
3.	Key escrow and secret sharing {2 classes}					
4.	Public-key encryption: RSA, ElGamal, padding schemes, semantic security {9 classes}					
5.	Signature schemes: RSA, DSA, ECDSA {3 classes}					
	Pseudorandom bit generation: random bit generation, cryptographically strong pseugenerators, Yao's Theorem {2 classes}	dorandom bit				
	Key establishment and management: key distribution centers, Diffie-Hellman and stat key agreement, Merkle authentication trees, certificate authorities, public key infra classes}					
	Deployed cryptography: Kerberos, PGP, SSL/TLS, WEP/WPA, digital payment syst cash, micropayments), electronic voting {6 classes}	ems (SET, e-				

9. Selected advanced topics: zero-knowledge proofs, strong password protocols (EKE/STP), identitybased encryption, broadcast encryption, oblivious transfer {2 classes}

NOTE: When course is taken as 500-level credit (CS 591 "Special Topics"), there will be additional requirements such as a research project.

Latest Revision: Fall 2020