Course Number	CS 315	Course Title	Computer Logic and	Digital Desig	n		
Semester Hours	3	Course Coordinator	Bidyut Gupta				
Catalog Description	Introduction to switching algebra and its applications. Combinational logic and combinational circuit components. Sequential logic and sequential circuit components. Asynchronous sequential circuits. Textbooks						
Open Educational Resources used for this course.							
References							
Course Learning Outcomes							
 To learn the basic principles of digital system design and analysis. To learn the analysis and design of combinational circuits using Boolean algebra and truth tables. To learn state transition techniques for the analysis and design of sequential circuits. 							
Assessment of the Contribution to Student Outcomes							
Outcome →	1	2	3 4	5	6		
Assessed →	Х	Х			Х		
Prerequisites by Topic							
CS 215 with a grade of <i>C</i> or better							

CS 315	Computer Logic and Digital Design	Page 2				
Major Topics Covered in the Course, Continued						
1. Introduction to switching algebra and its applications: fundamental postulates, switching						
expressions and their manipulation, De Morgan's theorems, canonical forms of switching						
f	nctions, Boolean algebra, minimization of switching functions {5 classes}					
2. 0	2. Combinational logic: design procedure, analysis procedure, code conversion, multilevel NAND					
c	rcuits, multilevel NOR circuits {8 classes}					
3. C	ombinational circuit components: adders and sub tractors, decoders and encoders,	read-only				
n	emory (ROM), programmable logic array (PLA) {8 classes}					
4. S	equential logic: flip-flops, triggering of flip-flops, sequential and finite state mach	ines, state				
а	signment problems, design procedure, analysis procedure, races {6 classes}					
5. S	equential circuit components: registers, counters, random access memory (RAM),	algorithmic				
S	ate machines, implementation of control, Mealy and Moore systems {8 classes}					
6. A	synchronous sequential circuits: design procedure, analysis procedure, reduction	of state tables,				
ra	ce-free state assignment, hazards {5 classes}					
	Latest Revision: Fall 2020					