Dept Number	CS	5 215	Cou	rse Title	Disc	rete Mat	thematic	28		
Semester Hours		4	Cou	rse rdinator		a Housh	mand			
Catalog Description	Introduction to topics relevant to the study of computer science including: number systems, sets, sequences, summations, logic and truth tables, proofs, functions, relations, matrix operations, combinations, permutations, counting techniques, discrete probability, algorithmic complexity, recurrence relations, Boolean algebra, simple combinational circuits, simplification techniques.									
	<u> </u>			Textboo	ks					SP17
Discrete Mathematics	5. and Its 1	Application	es (Stu	dent's So						
Publisher, 7 th Edition,	2012, 18	BN: 97800		8506. Referen	20C					
				Kelel elle	.05					
		Co	ourse l	Learning	Outco	mes				
• To obtain a good	foundatio	on for furth	er stuc	ly in con	puter sc	cience.				
• To learn greater p	roficienc	y in basic 1	nather	natical c	oncepts	that is in	portant	in comput	er scienc	ce.
• Understanding wh	nere and	how these f	fundan	nental toj	oics imp	act the st	tudy of c	computer s	science.	
	Asses	sment of t	he Co	ntributi	on to St	udent O	utcomes			
										SP17
Outcome →	1	2	3	4	5	6	7	8	9	10
Assessed \rightarrow	Х	X	Х							
			Prere	quisites	оу Торі	с				
	Mathe	matics 111	or equ	uivalent v	vith a gr	ade of C	or better	r		

CS 2	215	Discrete Mathematics	Page 2
		Major Topics Covered in the Course	
1.	Logic		
	Propo	sitional logic, truth tables; conjunction, disjunction, negation; conditional, inverse,	converse,
		a positive; logical equivalence	
		tification: existential and universal, nesting	
		terexample methods of proof: direct, indirect, contradiction	
		ple: logic programming {6 classes}	
	Sets Dafin	itions, aquality, subset, cordinality, nower set, n tunle, Cartesian product, empty as	.+
		itions: equality, subset, cardinality, power set; n-tuple, Cartesian product, empty se nt sets, universe	π,
		tions: union, intersection, difference, complement; principle of inclusion-exclusion	n: set
	identi		.,
	Exam	ple: computer representation of sets {2 classes}	
3.	Funct	ions and relations	
		itions: function, one-to-one functions, onto functions, domain range, inverse functi	on,
		osition; representing the graph of a function	
		non functions: floor, ceiling, factorial, absolute value, polynomial functions; Horne	er's method
		rties of relations: reflexive, symmetric, transitive, composite of two relations valence relations	
	-	valence classes and partitions	
		relations	
	•	ples: growth curves, databases and relations {4 classes}	
	Intege		
	Defin	ition of division; definition of a prime number and a composite; fundamental theor	em of
		netic; prime factorizations; the division algorithm; concept of the div and mod oper	
		est common divisor; least common multiple; modular arithmetic; representations o	
		timal, binary, and hexadecimal; conversion from one base to another; Horner's met	hod
		dean algorithm ples: Pseudo random numbers, cryptography	
	Matri		
		itions: identity matrix, sum, product, transpose symmetric matrix	
		ple: representation of relations using matrices {2 classes}	
		ences and summations; arithmetic progression; geometric progression; summation i	notation;
		non summation {2 classes}	
7.	Proof	by mathematical induction; mechanics of a proof; validity of a proof by mathemat	ical
		tion {2 classes}	
		ting techniques; product rule; sum rule; principle of inclusion-exclusion; use of tree	•
	-	atations; combinations; binomial theorem; Pascal's triangle; permutations with repe	etitions
		ple: generating permutations and combinations {3 classes}	.h
		rence relations: definitions; common examples; compound interest, Fibonacci num of Hanoi solving recurrence relations; linear homogeneous relations with constant	
		cients; linear non homogeneous relations with constant coefficients	
		ple: divide and conquer recurrence relations {3 classes}	
		ean algebra; Boolean algebra and logic gates; simplification of Boolean functions;	Karnaugh
		simple combinational circuits {12 classes}	