Course Number	CS 215	Course	Title D	Discrete Mathema	tics		
Semester Hours	4	Course Coordi		Rana Salameh			
Catalog Description	Introduction to topics relevant to the study of computer science including: number systems, sets, sequences, summations, logic and truth tables, proofs, functions, relations, matrix operations, combinations, permutations, counting techniques, discrete probability, algorithmic complexity, recurrence relations, Boolean algebra, simple combinational circuits, simplification techniques.						
		Te	xtbooks			SP20	
Irani, Sandy. 2020. I	Discrete Mather	natics. ZYBo	ooks, e-boo	ok.			
		Re	ferences				
		Course Lea	arning Ou	tcomes			
• To obtain a good	foundation for	further study i	in compute	er science.			
• To learn greater p	roficiency in ba	asic mathemat	tical conce	pts that is importa	nt in computer	science.	
• Understanding wh	nere and how th	nese fundamer	ntal topics	impact the study of	f computer sci	ence.	
	Assessment	t of the Conti	ribution to	o Student Outcom	ies		
						SP20	
Outcome →	1	2	3	4	5	6	
Assessed →		Х				X	
		Prerequi	isites by T	opic			
	Mathematics	111 or equiva	alent with	a grade of <i>C</i> or bet	ter.		

CS 2	15	Discrete Mathematics	Page 2			
			1			
		Major Topics Covered in the Course				
	Logic					
		ositional logic, truth tables; conjunction, disjunction, negation; conditional, inverse,	converse,			
		a positive; logical equivalence				
		tification: existential and universal, nesting				
		terexample methods of proof: direct, indirect, contradiction ple: logic programming {6 classes}				
2.		pie. togie programming (o classes)				
	Definitions: equality, subset, cardinality, power set; n-tuple, Cartesian product, empty set,					
		nt sets, universe	- 7			
(Opera	ations: union, intersection, difference, complement; principle of inclusion-exclusion	n; set			
	identi					
		ple: computer representation of sets {2 classes}				
	ions and relations					
		itions: function, one-to-one functions, onto functions, domain range, inverse functi- osition; representing the graph of a function	on,			
		non functions: floor, ceiling, factorial, absolute value, polynomial functions; Horne	er's method			
		erties of relations: reflexive, symmetric, transitive, composite of two relations	i b methoe			
		valence relations				
	-	valence classes and partitions				
	•	relations				
	Examples: growth curves, databases and relations {4 classes}					
	Intege Defin	ers ition of division; definition of a prime number and a composite; fundamental theory	em of			
		netic; prime factorizations; the division algorithm; concept of the div and mod oper				
		est common divisor; least common multiple; modular arithmetic; representations of				
		cimal, binary, and hexadecimal; conversion from one base to another; Horner's metl				
		dean algorithm				
		ples: Pseudo random numbers, cryptography				
	Matri					
		itions: identity matrix, sum, product, transpose symmetric matrix				
		ple: representation of relations using matrices {2 classes} ences and summations; arithmetic progression; geometric progression; summation r	notation			
		non summation {2 classes}	iotatioli,			
		by mathematical induction; mechanics of a proof; validity of a proof by mathematic	ical			
		tion {2 classes}				
		ting techniques; product rule; sum rule; principle of inclusion-exclusion; use of tree	e diagrams;			
		utations; combinations; binomial theorem; Pascal's triangle; permutations with repe	titions			
		ple: generating permutations and combinations {3 classes}				
		rrence relations: definitions; common examples; compound interest, Fibonacci num				
		of Hanoi solving recurrence relations; linear homogeneous relations with constant icients; linear non homogeneous relations with constant coefficients				
		ple: divide and conquer recurrence relations {3 classes}				
		ean algebra; Boolean algebra and logic gates; simplification of Boolean functions;	Karnaugh			
		; simple combinational circuits {12 classes}				

Latest Revision: Spring 2020