Course	CS 401	Course Title	Computer Architecture				
Number							
Semester Hours	3	Course Coordinator	Koushik Sinha				
Catalog							
Description	Review of logical circuit design. Hardware description languages. Algorithms for high-speed addition, multiplication and division. Pipelined arithmetic. Implementation and						
	control issues using PLA's and microprogramming control. Cache and main memory						
	design. Input/Output. Introduction to interconnection networks and multiprocessor						
	organization.	-	-				

Textbooks

SP20

Hennessy, J. L. (2017). *Computer Architecture: A Quantitative Approach*. Elsevier, 6th Edition. ISBN: 9780128119051.

References

Course Learning Outcomes

- To understand the concepts in computer organization and architecture.
- To learn to design processor, control, memory, and I/O sections.
- To learn the basic concept and design of multiprocessor systems.

Assessment of the Contribution to Student Outcomes										
Outcome >	1	2	3	4	5	6	7			
Assessed →	X	X	X							

Prerequisites by Topic

CS 320 with a grade of *C* or better or graduate standing.

Major Topics Covered in the Course

- 1. Evolution and taxonomies of Computer Architecture, review of I/O interface {4 classes}
- 2. Processor design, microprogramming, instruction formats, number representations, design of advance and high speed arithmetic circuits, addition and subtraction, multiplication, division, pipelined arithmetic {10 classes}
- 3. Memory organization: semiconductor memories, associative memories, cache memories, parallel memories {4 classes}
- 4. Pipelines: instruction, arithmetic, static and dynamic pipeline designs, structural, data, and control hazards {12 classes}
- 5. CISC/RISC features {4 classes}
- 6. Interconnection networks: non-blocking, blocking, rearrangeable networks {6 classes}
- 7. Parallel computers: multiprocessors and multicomputers, cache coherence {6 classes}

NOTE: When course is taken as 500-level credit (CS 591 "Special Topics"), there will be additional requirements such as a research project.

Latest Revision: Fall 2020