Utilities and MDP: A Lesson in Multiagent System

Henry Hexmoor SIUC

Utility

Preferences are recorded as a utility function

$$u_i:S\to R$$

S is the set of observable states in the world u_i is utility function

R is real numbers

States of the world become ordered.

Properties of Utilites

- \triangleright Reflexive: $u_i(s) \ge u_i(s)$
- Transitive: If $u_i(a) \ge u_i(b)$ and $u_i(b) \ge u_i(c)$ then $u_i(a) \ge u_i(c)$.
- Comparable: $a, b \text{ either } u_i(a) \ge u_i(b) \text{ or } u_i(b) \ge u_i(a).$

Selfish agents:

 A rational agent is one that wants to maximize its utilities, but intends no harm.

Utility is not money:

 while utility represents an agent's preferences it is not necessarily equated with money. In fact, the utility of money has been found to be roughly logarithmic.

Marginal Utility

Marginal utility is the utility gained from next event

Example:

getting A for an A student.

versus A for an B student

Transition function

Transition function is represented as

Transition function is defined as the probability of reaching S' from S with action 'a'

Expected Utility

 Expected utility is defined as the sum of product of the probabilities of reaching s' from s with action 'a' and utility of the final state.

$$E[u_i, s, a] = \sum_{s' \in S} T(s, a, s') u_i(s')$$

Where S is set of all possible states

Value of Information

 Value of information that current state is t and not s:

$$\Delta E = E[u_i, t, \pi_i(t)] - E[u_i, t, \pi_i(s)]$$

here $E[u_i,t,\pi_i(t)]$ represents updated, new info $E[u_i,t,\pi_i(s)]$ represents old value

Markov Decision Processes: MDP

• Graphical representation of a sample Markov decision process along with values for the transition and reward functions. We let the start state be s1. E.g.,

$a_2:0.2$	$a_2:0.8$	
$a_3:0.2$		
(s_2)		(s_3)
TT	$a_4 : 1$	AL
/ \	a_4 . 1	/ \
a / \ a		a / \
8.0 :		5: / \&
;;		
$a_1:($		$1 \setminus a$
0 / / ~		~ \
\ /	$a_2:0.8$	\ /
1		1
$\sim 100 \times (s_1)$		(s_4) (s_4)
$a_1:0.2$	- 0.0	$u_1 \cdot v_1$
$a_1: 0.2$ $a_2: 0.2$	$a_4:0.8$	$a_4:0.2$
-		4

 $a_0 \cdot 0.2$

s_i	a	s_{j}	$T(s_i, a, s_j)$
s_1	a_1	s_1	0.2
s_1	a_1	s_2	0.8
s_1	a_2	s_1	0.2
s_1	a_2	s_4	0.8
s_2	a_2	s_2	0.2
s_2	a_2	s_3	0.8
s_2	a_3	s_2	0.2
s_2	a_3	s_1	0.8
s_3	a_4	s_2	1
s_3	a_3	s_1	1
s_4	a_1	s_4	0.1
s_4	a_1	s_3	0.9
s_4	a_4	s_4	0.2
s_4	a_4	s_1	0.8

Reward Function: r(s)

Reward function is represented as

$$r: S \rightarrow R$$

Deterministic Vs Non-Deterministic

Deterministic world: predictable effects
 Example: only one action leads to T=1, else Φ

Nondeterministic world: values change

Policy: TT

- Policy is behavior of agents that maps states to action
- ullet Policy is represented by $\, {\cal T} \,$

Optimal Policy

- Optimal policy is a policy that maximizes expected utility.
- ullet Optimal policy is represented as π

$$\pi_i^*(s) = \arg_{a \in A} \max E[u_i, s, a]$$

Discounted Rewards: $\gamma(0-1)$

 Discounted rewards smoothly reduce the impact of rewards that are farther off in the future

$$\gamma^{0}r(s_{1}) + \gamma^{1}r(s_{2}) + \gamma^{2}r(s_{3}) + ...$$

Where $\gamma(0-1)$ represents discount factor

$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') u(s')$$

Bellman Equation

$$u(s) = r(s) + \gamma \max_{a} \sum_{s'} T(s, a, s') u(s')$$

Where

r(s) represents immediate reward
T(s,a,s')u(s') represents
future, discounted rewards

Brute Force Solution

- Write n Bellman equations one for each n states, solve ...
- This is a non-linear equation due to \max_{α}

Value Iteration Solution

- Set values of u(s) to random numbers
- Use Bellman update equation

$$u^{t+1}(s) \longleftarrow r(s) + \gamma \max_{a} \sum_{s'} T(s, a, s') u^{t}(s')$$

Converge and stop using this equation when

$$\Delta u < \frac{\in (1-\gamma)}{\gamma}$$

where Δu max utility change

Value Iteration Algorithm

$$VALUE - ITERATION \quad (T, r, \gamma, \in)$$

$$do$$

$$u \leftarrow u'$$

$$\delta \leftarrow \phi$$

$$for \quad s \in S$$

$$do \quad u'(s) \longleftarrow r(s) + \gamma \max_{a} \sum_{s'} T(s, a, s') u(s')$$

$$if \quad |u'(s) - u(s)| > \delta$$

$$then \quad \delta \leftarrow |u'(s) - u(s)|$$

$$until \quad \delta < \frac{\in (1 - \gamma)}{\gamma}$$

$$return \quad u$$

 $\gamma = 0.5$ and $\epsilon = 0.15$. The algorithm stops after t=4

	Time (t)				
	0	1	2	3	4
$u(s_1)$	0	0	0	.5(.8).45 = .18	.5(.09 + .378) = .23
$u(s_2)$	0	0	.5(.8)1 = .4	.5(.88)1 = .44	.5(.18 + .98) = .57
$u(s_3)$	0	1	1	1 + .5(1).45 = 1.2	1 + .5(.47) = 1.2
$u(s_4)$	0	0	.5(.9)1 = .45	.5(.9 + .045) = .47	.5(1.1 + .047) = .57

s	$\pi^*(s)$
s_1	a_2
s_2	a_2
s_3	a_3
s_4	a_1

MDP for one agent

- Multiagent: one agent changes, others are stationary.
- Better approach $\rightarrow T(s, \vec{a}, s')$

 \vec{a} is a vector of size 'n' showing each agent's action. Where 'n' represents number of agents

- Rewards:
 - Dole out equally among agents
 - Reward proportional to contribution

Observation model

- noise + cannot observe world ...
- Belief state $\vec{b} = <P_1, P_2, P_3, ..., P_n>$
- Observation model O(s,o) = probability of observing 'o', being in state 's'.

$$\forall_{s'} \quad \overrightarrow{b'}(s') = \alpha O(s', o) \sum_{s} T(s, a, s') \overrightarrow{b}(s)$$

Where α is normalization constant

Partially observable MDP

$$T(\vec{b}, a, \vec{b'}) = \begin{cases} \sum_{s'} O(s', o) \sum_{s} T(s, a, s') \vec{b}(s) & \text{if * holds} \\ 0 & \text{otherwise} \end{cases}$$

* -
$$\forall_{s'}$$
 $\overrightarrow{b'}(s') = \alpha O(s', o) \sum_{s} T(s, a, s') \overrightarrow{b}(s)$ is true for $\overrightarrow{b}, a, \overrightarrow{b}$

new reward function

$$\rho(\vec{b}) = \sum_{s} \vec{b}(s) r(s)$$

Solving POMDP is hard.