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Abstract

Crowds are physical aggregations of people. There has been an interest in modelling crowds

in order to determine the microscopic basis for emergent crowd behaviours. To date, most

microscopic models focus more on spatial/physical factors than on human behavioural factors

(or vice versa). The isolation of these approaches to crowd dynamics more generally was

criticised by Sime, who advocated a more integrated perspective.

We identify microscopic human behaviour simulation, implemented at the heart of micro-

scopic movement models, as a way to act on Sime’s concerns. We offer the Microscopic Human

Factors methodology to guide this integration: describing (or describing a hypothesis for) a

behaviour in the world, taking an individual perspective in describing the essential aspects of the

behaviour, and tightly integrating these aspects within an appropriate microscopic formalism.

We present three demonstrations of the methodology. We add to a prominent microscopic

model simulations of voluntary pushing (and an accompanying simulation of force and safety),

discovery/communication of spatial information, and front-to-back communication (which has

not been previously formalised). Key findings of the demonstrations were that (i) limited

numbers of agents (modelled individuals) at the rear of a crowd can cause injuries and jamming

near the front by triggering and targeting the pushing and leaning forces of others, (ii) knowledge

differences lead to behavioural heterogeneity that in highly driven crowds can provoke injuries

(that can be resolved through communication) as agents work at cross-purposes; (iii) our

conception of front-to-back communication allows agents to dynamically moderate the force in

the model to reduce injuries (often at the cost of slower movement). The results of the second

demonstration are related to a crowd disaster at Lenin Stadium, while the third demonstration

includes a reconstruction of the Who concert disaster at Riverfront Coliseum.
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These demonstrations show the practicality and value of the method. Each generates inter-

esting results, discussion, conclusions and future work. Each improves the model relative to

Sime’s concerns. Each broadens the range of the model, allowing more complex scenarios to be

represented. This shows the positive consequences of addressing Sime’s concerns in microscopic

models: crowds truly are made of people.
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Chapter 1

Introduction

1.1 The crowd

Crowd situations are one of the few situations in which humans flock together. Although most

crowds we encounter in our daily lives are safe, media reports remind us that different types of

crowd situations can be dangerous. Evacuations in fires, for example, can become competitive

and people can be badly injured or killed through crowd forces just as they can be overcome by

smoke and flames (Chertkoff & Kushigian, 2001). Acquisitive crowd disasters, sometimes called

crazes, can occur when people compete to obtain a limited resource (like food, water, or one of

a limited number of gatecrasher specials at a retail outlet). Large numbers of people moving in

a constrained environment, even if they have the same goals and are not competitive, can also

find themselves in dangerous conditions; at the Hajj, for example, crowd disasters have occurred

as 2.5 million pilgrims attempt to complete religious obligations, but also as pilgrims simply

return to their accommodations after the completion of the ritual (Crowd Dynamics, 2007).

1.1.1 Studying crowds

Crowds are aggregations of humans. These aggregations themselves seem to have certain be-

haviours and properties (e.g. jamming at bottlenecks) that emerge from the collective behaviour

of individuals within the crowds. Like other aggregations of animals (e.g. cattle herds, fish

schools) and material (e.g. fluid and particle flow) that have their own emergent dynamics,

there has been an interest in determining the basis of crowd-level effects and properties, such

1
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as in cases where large groups of people must move through a doorway, narrow hall or other

restricted environment. If we are armed with an understanding of how collections of individuals

create emergent crowd-level behaviours, we may be able to create spaces or suggest behaviours

that promote safe and efficient movement of crowds.

As crowd behaviours arise from large groups of people, and as crowd behaviours of interest

may be dangerous, computer modelling has emerged as a key tool to study the foundations of

crowd behaviour and to predict crowd movement through physical environments. These models

explore scenarios as disparate as planning designated walking routes for large urban festivals

(Batty, Desyllas, & Duxbury, 2003), interactions between military and civilian groups in wartime

(Nguyen, McKenzie, & Petty, 2005), estimating time for people to exit from a high-rise building

(Fahy, 1994), and many others. The purpose of the models can be practical (as are the models

just described) or more theoretical — considering factors that underlie particular patterns of

movement or crowd effects. Additionally, different approaches to modelling exist, with some

models being based on traditional numerical-continuous techniques adapted from physics (e.g.

Helbing, Farkas, Molnár, & Vicsek, 2002) and others being more based on discrete modelling

techniques like cellular automata (e.g. Burstedde, Klauck, Schadschneider, & Zittartz, 2001).

Our interest lies in the area of microscopic modelling of crowds. Microscopic models are

designed to work just like real crowds. They directly simulate the behaviour of each individual

in a crowd, with collective effects emerging from individual behaviours. They ask questions like

which individual actions lead to the complex collective behaviours, and how these individual

actions combine to create crowd behaviours. The aim of this type of research is often qualitative,

studying the behaviour of abstract crowds, rather than producing simulations that aim to quantify

and predict crowd behaviour in specific environments. In short, microscopic modelling looks at

the mechanism for emergent crowd effects.
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The general microscopic strategy is to model individuals using simple rules for behaviour.

These rules should be local: Like real people in real crowds, agents1 perceive only their imme-

diate surroundings. These simple local rules determine the agent’s behaviour, and — when

collections of agents are gathered together — emergent behaviours occur and can be studied

at the level of the crowd. The emergent behaviours come directly out of the simple rules. This

offers the opportunity for experimentation upon the mechanisms of the model. Through this

experimentation causal connections can often be established between the rules (at the level of

the individual) and the effects (at the level of the crowd). As most microscopic crowd modelling

has taken place within the domain of statistical mechanics in physics, primary interest has been

in modelling physical and movement effects.

1.1.2 Crowds are made of people

Unlike cattle, fish and seeds in a hopper, what unifies all crowds — disastrous or no — is the fact

that they contain a number of humans situated in an environment. Accordingly, in considering

crowd behaviour we must remember that we are studying a phenomenon of groups of social

actors driven by human behaviour. Disregarding this while trying to understand crowd disasters

can lead to over-emphasis on such factors as the physical environment, and over-generalisation

of crowd disasters to physical domains such as particle and fluid dynamics. In this regard, it

is worth noting that although many non-cognitive factors are legitimately implicated in crowd

disasters (e.g. those described in the opening paragraph of section 1.1.1), such disasters never

arise in the analogous inanimate situations. There may be some physical similarity between the

arrangements of seeds in a hopper, particles in a hydrodynamic system, and persons in a crowd,

for example, but people have many capacities that the other systems do not. For example, people

have the capacity to extract information from the environment, alter their goals and change

direction, communicate verbally and non-verbally and apply force at their discretion. Although

1In this thesis we shall use the term person to refer to humans in real crowds. We shall use the term agent to refer
to a modelled individual in a simulated crowd. Crowd, crowd member and individual are used interchangeably to
refer to agents or people, the meaning should be clear from the context; where necessary we specify that we are
talking about a real crowd as opposed to a modelled one.
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we must always remember that a crowd is a collection of people, it is commonplace for us not

to do so.

Although this point may seem evident, Jonathan Sime, an environmental psychologist,

cautioned building designers against creating what he termed ball-bearing designs that treat

people “as if they are non-thinking objects rather like the elements of a building structure”

(1985). To psychologists and engineers, he pointed out that this kind of thinking is encouraged

by arbitrary distinctions between academic disciplines; while engineers create ball-bearing

designs, psychologists divorce crowds from their environment:

Psychology and engineering are characteristically mutually exclusive in their focus
on the perspective of crowd members who think and behave (psychology) or on
static and dynamic objects (engineering) . . . The history of psychology, and indeed
crowd psychology, is one in which the physical environment in which behaviour
takes place has been ignored. While this might justifiably frustrate engineers, it
is equally the case that social scientists are bemused by the lack of attention in
engineering to the psychological and social aspects of crowd safety. . . (1995)

Let us take an example to illustrate the necessity of studying human behaviour in crowds.

Many crowd disasters have occurred when people at the rear of a crowd have an expectation of

what is going on at the front that leads them to engage in counter-productive behaviours (like

pushing). This situation, for example, may arise after a fall on stairs when the front of a crowd

stops to allow the fallen person to rise. Those at the rear of the crowd — unaware of the reason

for the delay — press forward. The combined forces of the crowd cause a pile-up and in extreme

circumstances can lead to death by crushing for those at the focus of the force. This situation

can be summed up by stating that “crowd incidents often exhibit . . . a failure of front-to-back

communication” (Pauls, 1984; see also Fruin, 1993).

In trying to prevent crowd disasters we might accordingly try to increase the safety of stairs

to prevent falls (an engineering approach). It is worth stopping to consider, however, whether

the situation might equally have been averted by alerting those at the rear of the delay, its cause

and its transience (a behavioural approach). While we might say that those at the rear caused

the disaster through their pushing behaviours (a physical characterisation), we can equally say

that the disaster had its origins in human factors: ignorance (of the fall), assumption (of the
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conditions at the front), expectation (of the normal progress of the crowd), etc. As Sime suggests,

we might expect that researchers studying pedestrian dynamics would take both physical and

human factors into account, but frequently this does not occur.

Another example of a lack of attention to human behaviour is the persistence of panic as a

description of behaviour in crowd disasters. Despite the fact that general panic as a conception

of crowd disaster behaviour has been academically discredited (see section 2.3 for more on this

point), its constant invocation by news reporters (to say nothing of fantastic images provided

by the entertainment industry) continues to fuel belief in this construct. Besides being a non-

explanatory construct, the invocation of panic to explain crowd disasters tends to shift attention

away from designers, planners and responsible authorities; safety systems designed by these

experts, the argument goes, can hardly be blamed if people ‘lose their heads’ and behave in

irrational ways (Sime, 1995). Panic, although discredited, is a compelling concept that persists

in crowd research.

1.1.3 People and microscopic models

But what of Sime’s concerns regarding the artificial separation of engineering and psychological

research when it comes to the modelling domain? Sime did not take a position on microscopic

models in particular, although he did comment in 1995 on models that study fires and similar

dangers in buildings and ships. He reported that modellers recognised the problem of omitting

human cognition, decision making and social behaviour from models, but were not addressing

it due to the difficulty of implementing cognitive simulations, saying: “it is easier to model

people as homogeneous objects than interacting individual and group decision makers.” As

evacuation studies have not found identical automatons to be a good model of people, how-

ever, Sime suggests greater psychological relevance is required for accurate modelling in these

circumstances.

Microscopic models have evolved significantly in the intervening years. Given the focus of

these models on the behaviour of individuals, and the advances in both modelling technique and

computational power, we might expect that human behaviour would now play a significant role
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in modelling the behaviour of individuals. Unfortunately, this is not the case: the issues raised

by Sime persist. Microscopic models are generally identifiable as taking either an engineering or

psychological perspective rather than the necessary integrated view, and we are unaware of a

model that integrates these two aspects of crowd behaviour satisfactorily (see section 3.2 for

more on this point).

Confirming Sime’s ball-bearing concerns, engineering-heavy models suggest crowds are

simple and behaviourally homogeneous — that is they are composed of interchangeable automa-

tons that react identically to a given stimulus and do not maintain memory or experience that

makes them different from a neighbouring individual. This strategy produces simplistic results

that are unrealistic when simulation results are compared to real crowd scenarios; these often

include, for example, varying information, changing beliefs, and communication. Modelling

homogeneous agents denies the contribution of information, varying goals, and many other

human characteristics to crowd behaviour.

The models that do take account of human behaviour tend to suffer from missing or poor

integration with physical factors. Either they isolate themselves by focusing on behaviour to

the detriment of a physical simulation, or they provide a weak integration of behavioural and

physical simulation leading to uncertainty as to the mechanism of emergent crowd effects. As

real-life crowd situations involve both human and physical factors, it is our contention that the

lack of appropriate models is an impediment to understanding crowd dynamics.

An additional and related problem is that microscopic modellers on both sides of the disci-

plinary divide continue to model panic behaviours. This may be due to a lack of familiarity with

arguments against this view. Alternatively it may be because an assumption of panic significantly

reduces the work of creating a model.

These two problems — a continuing lack of interdisciplinary integration in microscopic

modelling, and a continuing focus on panic as a driver of behaviour — are the rationale for our

research.
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1.2 Research objective

The central theme of this thesis is that the interaction between behavioural and physical factors

in crowd dynamics requires that these be treated in an integrated fashion to obtain a model that

can reasonably be applied to people.

As current microscopic models fail to satisfactorily integrate these factors, we consider how

they can be integrated in the context of a microscopic model of crowd safety and dynamics. The

research problem became evident while taking a cognitive science perspective on the state of

microscopic modelling and grew out of our concerns that existing microscopic models displayed

unrealistic behaviour. We developed this position independently, and it was strengthened when

we uncovered Sime’s statements of his similar concerns (1985, 1995). We go beyond Sime,

however, noting that he restricted himself to encouraging modellers to improve their own

models; this thesis proposes a methodology for incorporating human factors into microscopic

crowd models.

Research objective: To develop a methodology to integrate relevant human be-

haviours with physical factors at the heart of microscopic crowd models for the purpose

of improving relevance to people and studying emergent crowd-level effects.

In this thesis, we develop a methodology that will allow for Sime’s concerns to be addressed

by implementing human factors in a microscopic model. A key aspect of this task is to implement

these factors without violating the integrity of the microscopic method (simulation of emergent

behaviour via collective action of individuals following local rules); microscopic models can

support integrated simple rules that together encompass both a behaviour simulation and a

physical one. By keeping the focus on the abstraction, simplicity and integration of rules, we

preserve the ability to experiment on the model to relate emergent crowd-level effects and the

mechanism that underlies them (we shall return to this point in chapter 4).

The value of the methodology is then demonstrated through its use in integrating three hu-

man behaviours into an existing microscopic model, and analysing the effects of these behaviours

on crowd dynamics and safety.
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1.3 General approach

1.3.1 Microscopic Human Factors

We propose the Microscopic Human Factors methodology (chapter 4) to meet our objective within

the context of microscopic modelling. The methodology involves three complete descriptions of a

human behaviour of interest at increasing levels of abstraction: the level of real behaviour in real

crowds, a description of the essentials of this behaviour (phrased in the language of individuals),

and an implementation in an appropriate microscopic model’s formalism. This methodology is

intended to generate an abstract model of the human behaviour of interest, making explicit the

modeller’s theoretical stance toward the essential mechanism of the behaviour, and producing a

representation of this mechanism that can be tightly integrated with a microscopic model. By

requiring that the behaviour be implemented at the heart of the microscopic model’s simple rule

set, the methodology helps to ensure that experimentation upon the implemented model can

reveal the effects of the human behaviour.

Ethical concerns preclude the experimental testing with human participants of many crowd

hypotheses, particularly those involving force and crowd safety. The abstract focus of the micro-

scopic model provides an important platform from which to evaluate how various factors can

interact in crowds. The scope of this project does not allow for development of non-microscopic

models that would provide quantitative predictions in specific scenarios, and we do not aim to

provide models that replace direct experimentation. Notwithstanding this, a microscopic model

incorporating human factors, such as may be generated using the methodology, provides an

environment within which to study the plausibility of crowd safety hypotheses and to examine

factors that may influence their effects. As with much research in the social sciences, we stress

the importance of confirming evidence from other disciplines and case studies. We shall return

to the question of validity in more detail in section 4.3.2.

We have chosen to implement three human behaviours as microscopic human factors to

demonstrate the effectiveness of the methodology and the consequent improvement (as per

Sime’s concerns) of a microscopic model. In the next section we describe the environment
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in which these demonstrations are carried out, and then we will present the details of each

demonstration.

1.3.2 Approach to demonstration

Several different modelling approaches have been put forward for computer modelling of crowds,

including differential equation models, numerical attraction-repulsion models and cellular au-

tomata. These types of models all have their strengths and weaknesses, but the principles of

multi-agent systems and swarm intelligence are a natural fit for microscopic crowd models.

These approaches emphasise the simulation of a complex system by modelling of a population

of independent agents (e.g. Bonabeau, Dorigo, & Theraulaz, 1991). Each agent is guided by

simple rules that consider information available locally in determining the agent’s subsequent

behaviour. Agent state is portable. This is analogous to the information resources available to an

individual in a large crowd; persons within crowds do not have access to an overall perspective

of the crowd’s conformation and must act with only their memory, experience and immediate

local conditions as sources of information.

We have adopted the floor field model (Burstedde et al., 2001; as modified in Kirchner

& Schadschneider, 2002) as the base for our microscopic, multi-agent model. This cellular

automaton model was well-suited for conversion to a multi-agent system due to its discrete grid

environment and emphasis on local processing by agents.

1.3.3 Demonstrations of value

To demonstrate the Microscopic Human Factors methodology, we have added three behaviours

to the floor field model: voluntary pushing, discovery and communication of spatial information,

and front-to-back communication. The first demonstration, of voluntary pushing (chapter 6;

Henein & White, 2005, 2007), also includes the addition of a simulation of the effects of force on

agents; the voluntary pushing is a human behaviour, while the corresponding force simulation

allows the model — originally restricted to modelling agent movement times — to consider

crowd safety through injuries as a dependent variable.
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Retaining the voluntary pushing and force simulation, the demonstration of discovery and

communication of spatial information adds the ability for agents to have a time-evolving repre-

sentation of the environment, and to communicate this outlook to others (chapter 7; Henein &

White, 2006). By allowing agents to change their view of the world, and by allowing them to

communicate these changes to others, the model is able to represent human capacities that the

simpler particle-based floor field model can not capture. The crowd heterogeneity that results

from simulating agents with multiple views of the world can also cause groups of ‘like-minded’

agents to form. We study the interactions between these groups in various crowd conditions.

In order to show the methodology can also operate in a more prospective mode, we build on

the results of the first two demonstrations to study locally-mediated front-to-back communication

in crowds (chapter 8; Henein & White, in press-a). As noted in section 1.1.2, failure of front-to-

back communication is commonly described in crowd disasters (Pauls, 1984; Fruin, 1993). The

mechanisms for successful front-to-back communication, however, and its ability to moderate

crowd forces have not been previously studied. We examine the effects of such communication

in three scenarios: a laboratory-type scenario allows comparison with the results of the previous

two chapters, while the other two relate to real crowd disasters, including a reconstruction of the

Who concert crowd disaster (see section 2.2.3). In the case of the Who disaster, we qualitatively

examine the forces in the original disaster, and then evaluate the benefits of front-to-back

communication.

These three demonstrations have been selected in order to demonstrate the methodol-

ogy at work toward three different ends. The first and second applications demonstrate well-

documented crowd behaviours, while the third investigates a behaviour that has been frequently

cited, but has not been previously studied in depth. The first and third applications demonstrate

changes where the goal is to add human behaviours to agents and then investigate the emergent

effects that ensue, while the second application demonstrates changes intended to directly create

groups of different-behaviour agents and then examine the interactions of these groups.

For each of these demonstrations we will provide a qualitative evaluation of the resulting

changes in crowd dynamics and safety, and discuss how the rules introduced by the methodology

underlie the emergent crowd effects produced. This will demonstrate the practicality and
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utility of the methodology in creating models that generate interesting results, discussion,

conclusions and future work. By demonstrating the additional value in representing human

factors in microscopic models, we will ultimately support Sime’s point regarding the importance

of integrating human and physical approaches to crowd dynamics.

1.4 Summary of contributions

This thesis makes two kinds of contribution to knowledge (we provide a list of specific con-

tributions in section 10.2). First, the Microscopic Human Factors methodology is offered as a

way to take account of Sime’s concerns by bringing human factors into the heart of microscopic

models. This methodology provides guidance in improving microscopic models to respond to

Sime’s criticisms while preserving the unique contributions of the microscopic approach.

Second, our demonstrations of the methodology, and the associated qualitative analyses,

each make contributions as they explore the mechanisms of the behaviours on which they focus,

and discuss their effects on movement and safety in crowds. This brings increased understanding

of the phenomena being demonstrated. Each demonstration is a contribution, as well, to the

floor field model’s research community, adding three different human factors into the context of

this microscopic model. In addition, the first demonstration provides a microscopic simulation

of crowd forces and safety, previously missing from this model.

1.5 Overview of thesis structure

In this thesis we divide the material presented into two categories. The first category presents

work that has come before: background information, and a review of the literature. The

second category presents our work and original research. The dividing line between these two

categories occurs midway through chapter 3, at the point where it turns from a description of the

literature of microscopic models to a critique of these models. In chapter 4, with a foundation

in crowd dynamics and the literature, we define our research objective and begin in earnest our

contributions with a discussion of the Microscopic Human Factors methodology.
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Beginning with chapter 2, the document proceeds as follows:

• Chapter 2 provides background information on pedestrian behaviour, crowd dynamics and

crowd safety; three short case studies are presented, and a discussion on information in

crowds. The purpose of this chapter is to give the reader enough of a background on what

is known about people in crowds to motivate the decisions taken during the modelling

process. Additionally, the case studies (a traditional way to study the human element in

crowds) will be referred to frequently in the remainder of the thesis.

• Chapter 3 begins with a presentation of the literature to date on human behaviour in

microscopic crowd modelling. (From here, we begin to focus on our own work, ideas and

research.) Having described the previous work, we then turn to a critique of the models

presented, identifying why — despite their benefits — they fail to satisfactorily integrate

human factors and physical factors together in the context of a microscopic model. The

problem of our inability to find a satisfactory model, and our discussion of the importance

of this integration is the topic of the closing section of the chapter; the goal of this key

section (3.3) is to succinctly motivate the research in the rest of the thesis.

• Chapter 4 begins by explicitly stating the research objective that defines the thesis, inspired

by the critique and problem summarised in section 3.3. We then turn to our approach to

reach this objective. We describe the Microscopic Human Factors methodology, how to

build a model using it, our arguments for establishing validity in models created with it,

and the limits that can be expected of this validity in an abstract microscopic model.

• Chapter 5 is a brief return to the work of others. As the methodology requires tight

integration of human factors with existing microscopic models, we need to describe such

an existing model in sufficient detail to make clear the process of integration. This chapter

provides the details of the floor field model (c.f. Burstedde et al., 2001; Kirchner &

Schadschneider, 2002), which we shall use as the base for the demonstrations to follow.
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• Chapters 6–8 demonstrate the Microscopic Human Factors methodology in action. As

discussed above, three experiments have been carried out to show how human behaviours

can be modelled microscopically, and the benefits that can be obtained from doing so.

– Chapter 6 focuses on the development of a model of voluntary pushing, and includes

a simulation of force and crowd safety.

– Chapter 7 builds on chapter 6 to add discovery and communication of spatial infor-

mation.

– Chapter 8 builds on chapter 7 to study front-to-back communication in a laboratory-

type scenario, and in two scenarios related to real-world crowd disasters.

• Chapter 9 is a short general discussion. It begins by bringing together the crowd dynamics

results obtained from the three separate demonstrations to draw joint conclusions, relating

these to research by others in this field, and suggesting future work inspired by this dis-

cussion. It returns to the methodology itself, making observations from the demonstration

process about the methodology’s benefits. Finally, the chapter returns to our original

motivation of addressing Sime’s concerns within the microscopic model context, arguing

that the methodology has improved microscopic modelling by taking Sime’s concerns into

account.

• Finally, chapter 10 summarises the conclusions obtained from the work, the contributions

made by the thesis, presents future work and some brief concluding remarks.



Chapter 2

A brief review of crowds and crowd safety

In order to build good crowd models it is necessary to understand how real crowds behave.

Traditionally this understanding has come through the study of case studies, but much is also

known about crowds from a theoretical perspective. By reviewing the human element as well as

the mechanical element of crowd behaviour we will be in a position to evaluate existing crowd

models and determine what must be added to them to improve our understanding of crowds.

We will briefly describe the basics of pedestrian dynamics and force in crowds, then describe

three short case studies, the myth of panic and conclude with a discussion of information in

crowds.

2.1 Force and Injuries in Crowds

2.1.1 Concept of levels of service, densities

Pedestrian dynamics are in some respects similar to traffic flows. Both pedestrians and vehicles

can exhibit following behaviours, can move through space that is set out specifically for their

use, can group themselves (or are grouped) into lanes that exhibit smooth flow behaviours.

Pedestrians, however, have much more flexible behaviours than vehicles do, and these more

flexible behaviours place them into a separate class (Blue & Adler, 2001). Pedestrians:

• can turn and reverse direction almost immediately at normal walking speeds

• enjoy unregulated behaviour compared to the strict controls for vehicle traffic

14
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• are free to vary their speed and can accelerate to full speed from a standstill

• are free to occupy any part of a walkway

• often walk side-by-side or in clusters

Moreover, the acceptable dynamics for pedestrians are different from vehicle dynamics. For

example, it has been noted that “while at the immediate and superficial level encounters on

the street are hardly noticeable and devoid or pleasantry and warmth, pedestrians do, in fact,

communicate and do take into account the qualities and predicaments of others in regulating

their behavior” (Wolff, 1973). Thus, as pedestrians are similar but not identical to vehicles,

modelling and planning for pedestrians requires pedestrian-specific approaches and techniques.

Planning for pedestrians requires a knowledge of the capacity of an environment to support

pedestrian behaviours, and also the number of pedestrians that will occupy a space. Fruin has

created the concept of levels of service in pedestrian environments, relating pedestrian density

to safety and possible movement rates (in the case of walkways) and psychological stress (in the

case of queueing). Fruin stresses that these human considerations are very important to take

into account in designing public spaces (1971).

Physical aspects of the environment will affect the density of pedestrians, and can affect

crowd distribution dramatically. For example, if people must move through a bottleneck, the

density of a crowd that was diffuse can increase dramatically. It has even been shown that when

pedestrians move through a bubble of expanded space (such as an open hall) in a corridor of

otherwise constant size, they experience an increase in density; even though the number of

persons was appropriate for smooth flow in the corridor, the spreading out in the expanded area

creates a bottleneck and increased density when the crowd must reform into the corridor width.

Density is also increased where two large flows of pedestrians must cross, disrupting the smooth

flow (Still, 2000). Thus, event planners, engineers and architects must carefully consider how

spaces are designed and used with an eye to ensuring pedestrian safety — even under extreme

conditions.
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2.1.2 Effects of force: Jamming, Fruin, and Helbing’s paradoxes

Studying the dynamics of crowd situations requires as much consideration of crowd forces as it

does of crowd movement and behaviour. Fruin states that forces generated within crowds are

caused by individuals physically pushing others, or through forces transmitted during leaning

on — or falling against — other people. There is a domino effect by which force originating

with one person can be transmitted and augmented through the next person, and this additive

effect can be the source of waves of force and serious safety issues (Fruin, 1993).

Moderate forces tend to cause inefficiencies in movement at bottlenecks, like doors for

example. Individuals tend to form a rainbow-like structure, resembling concentric semi-circular

arches centred on the doorway (see figure 1). Studies of this phenomenon indicate that the

arches have some structural stability and when loaded from behind tend to withstand a certain

amount of force. At a certain point, the innermost arch collapses towards the door (resulting

in the exit of a few people immediately in front of the door). The arch immediately behind

the now-exited front rank moves forward, and jams due to the fact that everyone in the now

front-most arch presses in toward the door. The cycle repeats with a build-up of force behind

this jammed arch. Video footage of exits reinforces the fact that this somewhat idealised view

can be further hampered by shoving that sets up oscillatory forces lateral to the direction of

travel through the door that also disrupt movement through the exit. Crowd researchers tend to

label these effects jamming or clogging at a bottleneck.

Figure 1: Arched jamming at exits. Left configuration is stable until front (white) arch breaks. Some
agents from next rank (light grey) move forward (middle configuration) while white arch exits, forming
a new arch (right configuration).

When forces build up to the point that they can no longer be described as moderate, serious

crowd situations can cause injuries and fatalities. Pedestrians are capable of packing themselves
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into a space well beyond what an environment will sustain and, by doing so, an individual gives

up control over their movement in a situation. Fruin has concluded that this point occurs around

densities of seven persons per square metre:

It is difficult to describe the psychological and physiological pressures within crowds
at maximum density. When crowd density equals the plan area of the human
body, individual control is lost, as one becomes an involuntary part of the mass. At
occupancies of about 7 persons per square meter the crowd becomes almost a fluid
mass. Shock waves can be propagated through the mass sufficient to lift people
off of their feet and propel them distances of 3 m (10 ft) or more. People may be
literally lifted out of their shoes, and have clothing torn off. . . (1993)

It is when these forces pin individuals against immobile objects — for example a wall,

obstacle, or even another person being pushed in a different direction — that injury or death

occurs. Fruin reports that the most common cause of death in crowds is compressive asphyxia —

occurring when the pressure on a person’s chest exceeds the capacity of their chest muscles to

expand the lungs. By analysing bent steel railings after fatal crowd disasters it is known that

crowd forces can exceed 4500 N (Fruin, 1971). Thus, it is vital to maintain crowd safety that

pushing be kept to a minimum in situations of high crowd density, and that crowd densities be

kept below critical levels.

Helbing has studied patterns of behaviour that occur when crowd forces reach extreme levels.

Two of his conclusions that are important to understanding crowd force behaviour are expressed

as paradoxical statements: ‘faster is slower’ and ‘freezing by heating’ (Helbing et al., 2002).

In ‘faster is slower’, the observation is made that slow and leisurely patterns of movement

promote smooth flows and faster exits. By increasing the speed, and therefore the energy and

momentum in the system, the flow becomes uncoordinated and less efficient. Consider a room

full of theatre-goers exiting after a long evening. Helbing’s thesis predicts that if they move

slowly but steadily toward the exit, then although the exit may take some time it will be smooth

and unmarked by clogging and jamming. By contrast, consider a crowd of shoppers anxious

to obtain one of a limited number of so-called door-crasher specials. If these individuals move

quickly from their cars to the entrance, higher speeds may cause a jam at the door. Even without

considering the possibility of people actively pushing that causes crushing, the retail situation is
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much less safe with an increased risk of jostling, stumbling and falling behaviours due to the

higher speeds of individuals. The net result, according to Helbing is slower collective progress

due to higher individuals speeds.

In ‘freezing by heating’ the observation is made that when speeds and energies are low,

crowd tolerances (in a physical sense) may be higher than when speeds and energies are high.

Consider two facing groups of pedestrians crossing the street. These two groups need to pass

through one another in the crosswalk. Slow speeds promote smooth flow as people have time to

find a space through the opposing crowd. If the groups attempt to cross at a run, however, there

will be insufficient time to make this accommodation and there will be collisions and jamming

in the crosswalk. With sufficiently large crowds and high energy and determination this kind of

situation can become a crowd disaster as one crowd pushes against the opposite to get through

and vice versa (an example of this kind of disaster will be found in section 2.2.2). Thus, Helbing

concludes that slower collective progress can result from higher individual energy in crowds.

A study of footage at the Hajj in 2006 documented the kind of shockwaves described by

Fruin (Helbing, Johansson, & Al-Abideen, 2007). As densities and forces increased during the

stoning of the devil ritual, the crowd moved from a laminar flow to stop-and-go movement to

shockwaves with a kind of incoordination reminiscent of air turbulence. Force built up over

time, and was suddenly released in a manner reminiscent of earthquakes.

In summary, the study of pedestrian and crowd behaviour is different from vehicle flows

and from the study of fluid dynamics and particle dynamics. Pedestrians’ differing physical

capabilities are one reason, but crowd pressures due to the desire to achieve certain goals (like

passing through a doorway) are another significant factor in explaining crowd behaviour. Crowd

forces override individual movement decisions when they become intense, can reach prohibitive

pressures, and in extreme situations cause death through compressive asphyxia.

2.2 Selected crowd disasters

The purpose of this section is to present three crowd disasters, in order to put the preceding

discussion and the introduction into some context. Additionally, these disasters will provide
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examples that can be referred to later. Only the principal details of each disaster are presented

here, with slightly more detail in the Who concert tragedy.

2.2.1 Bethnal Green Underground Station

On the evening of March 3, 1943, in the London neighbourhood of Bethnal Green, air raid sirens

sounded due to the possibility of German reprisals for an earlier raid by allied forces. In fact,

no bombs were dropped, but media reports suggest that loud experimental British anti-aircraft

missiles were tested (Lack, 2003). An inquiry report at the time suggested that “a salvo of

rockets was discharged from a battery a third of a mile away” (Dunne, 1943/1999). A survivor

of the incident recently recalled that “everybody surged forward, shouting, ‘There’s bombs,

there’s bombs, get down”’ (Lack, 2003). The inquiry report mentions that “there were some

cries reported that ‘they were starting dropping [the bombs], that it was a land mine, and other

alarming observations”’ (Dunne, 1943/1999). What had been an orderly descent of thousands

into the Bethnal Green tube station — part of a section of line that was under construction and

being used as an air raid shelter — became a rapid descent as more than 1500 people surged

forward to escape the sounds of war. This flight became a nightmare when falls on the steps

occurred:

Either as a result of the sudden pressure from behind, or, by an unlucky coincidence
simultaneously with the pressure reaching the people immediately behind her, a
woman, said to have been holding or leading a child, fell on the third step from the
bottom. This was observed both by a witness on the landing below and by at least 2
people in the crowd on the stairs behind her. As a result, or again, simultaneously, a
man fell on her left. This occurred in the right hand half of the stairway. So great
was the pressure from behind that those impeded by the bodies were forced down
on top of them with their heads outwards and towards the landing. In a matter of
seconds there was built an immovable and interlaced mass of bodies 5 or 6 or more
deep against which the people above and on the stairs continued to be forced by the
pressure from behind (Dunne, 1943/1999).

The real damage occurred as those outside the shelter — unaware of the problem on the

stairs — pressed forward to gain the safety of the lower level. In the ensuing crush 173 people

were killed (27 men, 84 women and 62 children) each one by asphyxiation.
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Some details about the event were captured by the official inquiry (Dunne, 1943/1999): A

Mrs. Barber, who witnessed the fall from behind, reported being lifted off her feet and carried

down the stairs with her feet off the ground by the force of the crowd before the woman fell.

The bodies could not be moved from below, and it took four hours to extricate the wounded

and dead who were “pressed together into a tangled mass of such complexity that the work

of extrication was interminably slow and laborious.” The conclusion of the inquiry was that

there were several contributing factors to the disaster, including the lack of a ‘crush barrier’ at

the top of the stairs that might have prevented the pressure of the desperate crowd from being

directly applied to those on the stairs. Inquiry witnesses who had descended before the disaster

were unanimous in saying that “the flow had been brisk and continuous” and that “while the

people were hurrying and were talking of expected raid, there was no disorder.” Despite this,

the inquiry report concludes with the suggestion that the disaster was caused by “a number of

people losing their self control. . . and practical common sense, the display of which has hitherto

prevented the people of this country being the victims of countless similar disasters” (emphasis

ours); in short, the event was put down to panic — a point we shall consider in section 2.3.

This event illustrates two of the principles we discussed in the preceding sections. Notably,

the speed increased when the relatively sedate crowd became frightened by the overhead

explosions. This was a contributing factor to the fall on the stairs as well as the determined

press behind the fall, and exemplifies Helbing’s ‘faster is slower’ paradox. Additionally, a failure

of front-to-back communication occurred in this situation, as the crowd forcing into the station

above the stairs was unaware of the unfolding disaster that their haste was perpetuating upon

those at the front.

2.2.2 Lenin Stadium, Moscow

On October 20, 1982 an international soccer match was played between Spartak Moscow and

the Dutch HFC Haarlem at Lenin stadium in Moscow. Some of the details of this event are

different in official and unofficial accounts, although Reuters has referred to this event as the

acknowledged worst soccer tragedy in the world. Fans began to exit the stadium down a dark
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icy hallway before the end of the game.1 When a late goal was scored, the sound of the cheering

from within caused these fans to attempt re-entry. The re-entering fans met exiting ones — a

single section of the stadium contained 10 000 fans — in what has been described as a ‘human

mincer’. Although numbers of dead were initially reported as “little more than a dozen”, and

eventually at 61 by Soviet authorities, an independent report seven years later put the number

at 340, and this number is commonly used in references to the event for memorial purposes.

(KLM, 2007; Ruizenaar, 2007; Crowd Dynamics, 2007; Edelman, 1993, p. 199)

Like the Bethnal Green tube disaster, this event highlights the failure of front-to-back com-

munication as a large crowd — with no knowledge of an ongoing catastrophe — attempted

to press forward as usual. Additionally, this event exemplifies Helbing’s ‘freezing by heating’

paradox as two crowds attempted to pass through one another with the high energy brought on

by the excitement of an international sports match. It should be noted that the heterogeneity of

the crowd goals was directly responsible for this disaster. Thus, a model wishing to study this

disaster requires capability to model a heterogeneous crowd.

2.2.3 Who concert disaster

On December 3, 1979, in Cincinnati, Ohio, 11 people were crushed and died due to compressive

asphyxia outside Riverfront Coliseum (now the US Bank Centre) before a concert featuring

The Who. Interestingly, security personnel remarked after the fact that crowd conditions on

December 3 were far from unusual for concert events, and that other concerts had been far

worse in terms of crowding. This is a very well documented crowd incident, and police radio

records and post-event interviews document the time-line fairly clearly. Two summaries of the

disaster from original sources exist (Johnson, 1987b; Chertkoff & Kushigian, 2001), and it is

these accounts which inform this section. As the communication problems in this disaster are so

clear and well documented, it is worth considering this event in slightly greater detail.

The attendees began to arrive at the venue early in the afternoon for the 8:00 pm perfor-

mance, gathering on a large terrace above ground level by designated entrances. This early

1Whether fans were exiting of their own accord, or — as some versions have it — were forced to exit by police, is
not important to our purpose here.
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arrival was because 85% of the roughly 21 000 tickets sold were for ‘festival’ or general ad-

mission seating arrangements. The crowd grew to the point where individual control was lost,

suggesting that — according to Fruin’s quality of service norms — crowd density exceeded seven

persons per square metre. In fact, a group of people at the rear were experimenting with the

creation of shockwaves through the crowd by shoving forward in concert. One small 17 year

old girl, who had been trying to escape the front of the crowd due to unbearable conditions,

reported overwhelming crowd force almost an hour before the major incident:

I lost my footing an’ slowly but surely began going down. People behind me could
do nothing to stop the pushing. I was saying “No. No. Please help me...” Some
of the people around didn’t even hear me.... So then I grabbed someone’s leg an’
whoever that was told three other guys about me. They all pushed me up, pulled me
up, but it was hard.... At about 7 o’clock I passed out. The four guys who pulled me
off the ground helped me to stay up until we got through the door (qtd. in Johnson,
1987b).

By 7:20 pm one police officer estimated that 8000 people were in the crowd outside the

doors. Entry was delayed due to the late arrival of the band and their need to do a sound check

before the performance. At about 7:30 pm less than 16 exterior doors were opened into an

intermediate ticket lobby and the crowd surged forward. About 25 people fell to the ground a

short distance from the exit. Despite the efforts of those around them to assist (or at least avoid)

the fallen, and to protect them from further assault, additional ranks of crowd members fell atop

them or were forced over them; the pile grew to 3–5 people deep at its worst, was 10–12 feet in

diameter, and some people were lying on concrete for as long as 30 minutes. Those farther back

(just 10 feet back according to one interviewee) were unaware of the situation and continued to

push to reach the stadium. After analysing numerous interviews, Johnson concluded that unlike

those nearer the rear, crowd members nearer the front were surging forward to reach safety

rather than to obtain good seats.

Security personnel tried to regulate the number of persons in the ticket lobby by closing the

doors when it became full. Each time this occurred people in the vicinity of the exit became

concerned that the venue was closing and the music from the sound check led them to believe

that the concert was under way, adding to the crowd’s determination to enter.
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Police and security were unable to patrol the terrace and did not observe the pile of people.

Due to their experience with rowdy concert-goers at previous events, and their belief that

concert-goers were drunk or high (rather than injured), authorities did not grasp the magnitude

of the disaster while it was unfolding. At 7:54 pm police became aware that a situation was

developing, although they initially thought that the problem was a single victim of a heart attack.

The extraordinarily high crowd density hampered rescue attempts and ultimately 11 died.

There were numerous types of communication breakdown in this crowd situation. Not

only were many crowd members unaware of the unfolding disaster, many crowd members

were unaware that people at the front were afraid for their lives well before the fatal pile-up

occurred. Those toward the front of the crowd — even if unaware of the pile-up — were

surging forward to safety, and those behind them were unaware of this reason for the surge

and joined in thinking they were missing the concert. Concert and venue managers assumed

that all was well, even when face to face with evidence of injured attendees in the ticket hall.

Police apparently had no overhead view of the situation, no facility to patrol the crowd, no

knowledge of the crowd conditions before the doors opened, no knowledge of the pile-up,

incorrect information about the injuries when they did become known and no way to reach the

injured. The only communication that functioned at all in the crowd was local communication

amongst neighbouring crowd members. The quotation above reveals the kind of communication

that did occur. Although Johnson did not study this directly, he states that local assistance was

generally attempted, and that there was difficulty and frustration in communicating to the rear

of the crowd.

From a modelling perspective, there is another interesting fact revealed by this event: not

all members of a crowd act toward the same ends. In other words, this was a heterogeneous

crowd. At first glance, this disaster may seem like a classic craze in which a crowd of essentially

interchangeable people competes for a limited resource (i.e. early access to preferred seating

locations). In this case, however, the crowd was not a monolithic block. Johnson reports that

many people attempted to escape the front of the crowd even before the doors had opened,

some in the back experimented or amused themselves with crowd shockwaves, others in the

back remained pre-occupied with the obvious goal of seeing a concert they thought had already
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begun. When we view the situation in this light it becomes natural to include situatedness,

communication and information in crowd models to produce individuals that are heterogeneous,

that is to say non-interchangeable, with memory and experience.

2.3 The myth of panic

The media is quick to label crowd disasters panics. At the time, for example, the Who concert

disaster was widely described as a tragedy caused by a type of acquisitive panic called a craze.

Johnson notes that the event was described as a “stampede,” fuelled by “mob psychology” that

resulted in “seemingly selfish, ruthless behaviour” by participants. In the 2006 crowd disaster in

Iraq (when many tried to exit an island over a small bridge due to concerns of a suicide bomb

attack) the BBC reported that “almost 1000 people are known to have died in a stampede...

Witnesses said panic spread over rumours of a suicide bombing.” (BBC, 2005) It suffices to scan

newspaper reports of this type for many more examples. But was the type of behaviour observed

at the Who concert disaster really a panic? What is panic, and what does such a label imply?

Panic is defined as follows:

Panic (adj.) of the nature of, resulting from, or exhibiting a sudden wild, unreason-
ing, or excessive state of fear or alarm.

Panic (n.) A sudden feeling of alarm or fear of sufficient intensity or uncontrollable-
ness as to lead to extravagant or wildly unthinking behaviour, such as that
which may spread through a crowd of people; the state of experiencing such a
feeling. Also: an instance or episode of such feeling; a scare. (Oxford English
Dictionary, 2007)

Panic is defined as an state of unreasoning, unthinking or non-rational behaviour, but to

the contrary most crowd disasters show the opposite kinds of thinking. This question about the

use of the word panic may seem like an unimportant semantic distinction, but in fact it is very

important to us; the value of modelling human behaviour in crowds turns on whether people in

crowds can process information rationally and use information to make decisions about courses

of action. In fact, it turns out that most situations are not well described by a view of participants

as irrational.
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Several researchers have specifically studied the question of panic in crowds. Sociologists

Quarantelli and Dynes (1972) studied different kinds of disasters (some first-hand) over many

years and reported few incidents of true panic, including amongst most of the people at the

truly horrific Cocoanut Grove fire.2 Analysis of events by Sime (1983) and Feinberg and Johnson

(2001) have shown that family groups tend to remain bonded together during disaster and

act to maximise chances of group survival rather than individual survival — contrary to what

would be expected in an irrational panic. In his analysis of records and interviews from the Who

concert tragedy, Johnson concludes that panic must include “unregulated competition” amongst

crowd members; far from uncontrollable fear leading to unthinking competition Johnson found

that almost every interview contained stories suggesting the opposite: intact social connections,

people helping friends and strangers, people looking for shelter, people trying to communicate

(Johnson, 1987b). Keating interviewed 100 people who escaped single-dwelling residential fires

and found “no evidence as yet of any panic behavior by the people involved,” instead finding

“just the opposite: altruistic, helping behavior — especially among family members” (Keating,

1982). Along the same lines, an official report determined that “September 11, 2001 showed that

people are willing to help out others during an emergency, even if they do not know the person

ahead of time” (Averill et al., 2005, p. 148). Nothing in the report suggests that widespread

panic was found during the disaster; an author of the report believes that widespread panic did

not occur amongst evacuees and noted that photos taken in stairwells during the evacuation

show people smiling, interacting and waiting patiently (Guylène Proulx, pers. comm.).

Reviewers have come to much the same conclusion. Chertkoff and Kushigian (2001) state

that their “case histories of good and poor traffic flow give little support to those theories that

allot a major role to the occurrence of panic” as defined by high emotional arousal coupled with

irrational behaviour. In a review of multiple events, Johnson “was struck not by the breakdown

of social order but by its strength and persistence; not by the irrational, individual behaviour of

popular myth, but by the socially structured, socially responsible and adaptive actions of those

2This fire on November 28, 1942 in Boston trapped 200 people in a basement room with one narrow staircase for
escape. Competition was fierce for exit, but in the end many were killed by flashover on the stairs. Three hundred
others were killed in other areas of this bar complex. The fire led to many modern fire code requirements like panic
bars on exit doors, exit signage, mandatory sprinklers and multiple stairways for exit from basements. (Chertkoff &
Kushigian, 2001)
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affected” (Johnson, 1987a). Clarke notes that “after five decades studying scores of disasters

such as floods, earthquakes and tornadoes, one of the strongest findings is that people rarely lose

control” (2001). It seems that the view that people generally act irrationally in crowd disasters

is not borne out by the evidence.

As we have seen with the Who concert disaster and at Bethnal Green, once we look closer at

the situation there is a lot of rational behaviour to be found, even under extraordinary stress. At

Bethnal Green, people’s flight from the sounds of war seem entirely reasonable. Pushing from

the rear — whether intended to communicate an emerging social norm for urgency or to hurry

the process — may well seem adaptive from the point of view of the individual at the back of

the crowd who does not realise that people at the front are being injured. It is important to

note that the emergent dynamics of multiple rational agents can itself be an irrational collective

behaviour, as is seen, for example, in the tragedy of the commons (Hardin, 1968), although we

shall have more to say about this below. One possible explanation of the appeal of the concept

of panic is that people may find it easier to believe that the people in a crowd disaster must have

misbehaved or ‘lost control’ than to accept that emergent effects like force and injury can be a

consequence of rational — if stressed — behaviour. A non-adaptive emergent behaviour can

arise from perfectly rational behaviour by individual actors.

For those within crowds we must also remember that Fruin tells us that individual control is

lost. We must resist the uninformed judgements of the media, who, for example, condemned

the “mob psychology” of “seemingly selfish, ruthless” people who “stomped 11 persons to death

[after] having numbed their brains on weeds, chemicals and Southern Comfort” (qtd. in Johnson,

1987b) at the Who concert. In fact, those who were forced to stand on the victims did so with

no control whatsoever of the placement or position of their body weight.

This is not to suggest that no situation has ever occurred in which people acted irrationally, or

fled mindlessly in fear. However, researchers have not found enough of these cases to document

this as a response pattern. In studying many crowd disasters in detail, however, they have

found that viewing people as making rational decisions given the information available has more

explanatory power.
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2.4 Information in Crowds

The conclusion we draw from the results of the previous section is that people within crowds

retain their ability to receive, understand, and process information — and indeed do so under

even extreme circumstances. Thus, when aiming to study emergent crowd properties and

crowd safety by modelling crowds at the microscopic level, some concept of information and

communication should be included.

Communication and information is known to be a factor in many crowd incidents. Pauls’

observation is not unique as inquiries into situations like the ones just described have often noted

the problem that those only a short distance from injured people do not realise that anything

is amiss (e.g. Johnson, 1987b). Proulx and Sime have noted that in fires notification is often

delayed (sometimes for fear of causing a ‘panic’) resulting in precious minutes being wasted

early in a situation. This delay can be self-fulfilling, with not enough time available for occupants

to assimilate the information and move to exits once notification is given. Their experiments

demonstrate that people do not panic in a perceived emergency, that they “act in accordance

with the knowledge of a setting and situation,” and that they require “information to define the

situation and to take the decision to evacuate.” (Proulx & Sime, 1991).

Fruin developed a concept that crowds are best modelled according to the acronym FIST

(Force, Information, Space, Time) (1993). According to Fruin, the concept of information

includes both pre-event factors (e.g. training) and intra-event factors (e.g. appropriate warnings,

crowd knowledge about exits and conditions). While pre-event factors are beyond the scope of

this thesis, intra-event factors can be modelled according to our methodology, and we take up

this challenge in chapters 7 and 8.

In the last section we compared crowd disasters to a tragedy of the commons, suggesting

that irrational collective behaviours can emerge from rational individual ones. The discussion of

this section indicates a key difference between typical commons tragedies (e.g. environmental

degradation) in which the speed of the emergent consequence (e.g. a polluted and dysfunctional

ecosystem) is slow (relative to people’s behaviours) and information is unconstrained. In crowds,

people may not have the information to understand the consequences of their actions, and so
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their behaviours may be rational and not motivated egoistically, while the emergent consequence

remains catastrophic.

In section 9.1 we shall return to many of the points of this section, armed with the results of

our demonstrations.

2.5 Summary

We have seen the essential principles of pedestrian movement and crowd dynamics: Pedestrians,

unlike vehicles, have flexibility of movement and relatively unconstrained social norms for where

and how they can carry it out. In crowds, people’s movement becomes limited and effective levels

of service decrease. Force in crowds can occur, generated by pushing and leaning, and tends

to cause inefficiencies at bottlenecks, including characteristic rainbow-like arches around exits.

Significant forces, which accumulate through multiple people pushing and leaning in concert,

can reach levels where people are injured or killed through compressive asphyxia. Crowd

forces lead to paradoxical emergent effects: slower collective progress results when individual

speeds increase, and increased speeds reduce available time to accommodate groups that must

infiltrate through one another. We reviewed three crowd disasters, and noted that panic is not

a good explanation of crowd behaviour. Finally, we discussed the limited information flow in

crowds, sometimes intentional on the part of facility managers, and sometimes a consequence

of inadequate front-to-back communication.

These crowd basics will be referred to throughout the remainder of the document as we

discuss existing models, and develop our demonstrations of the Microscopic Human Factors

methodology. We now turn to a review of the literature in microscopic modelling.



Chapter 3

Previous models, critique and problem

Microscopic crowd models seek to understand crowd behaviour through simulation of individu-

als’ behaviours. Through simulation of the individual dynamics in crowds, emergent patterns of

crowd behaviour can be observed and correlated with known principles of crowd dynamics. This

chapter begins with a literature review, which we have divided into two sections. First, we review

relevant microscopic models, discussing their approach and their aims. Second, we present a

critique of these models, from the point of view of Sime’s concerns about the integration of

physical and behavioural approaches to modelling, with a particular focus on the modelling of

panic. In both the review and the critique, presentation of models is grouped thematically: first

the microscopic crowd models themselves, second theoretical frameworks, and third the models

with a specific focus on psychological relevance.

We have divided the review of the models from the critique for two reasons: First, the

critique is made easier when we can discuss common aspects of models that have previously

been introduced. Second, the critique marks a transition in this thesis, the point at which our

focus shifts from the work of others and toward our own contributions.

We close this chapter by identifying general problems with the state of microscopic modelling:

a lack of attention to Sime’s concerns and assumptions of panic behaviours. This key section

motivates the work of the rest of the thesis.

29
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3.1 Review of previous models

3.1.1 Microscopic crowd models

Social Force model

Perhaps the best known of the microscopic crowd models is the Social Force model (Helbing,

Farkas, & Vicsek, 2000b). The motivation for the model was research in social psychology,

the conclusion of which was that mass panic was an appropriate model for crowd disasters;

that, after LeBon (1895/1960), mob psychology homogenises behaviour across individuals; that

interactions among people in crowds become primarily physical in nature; and that maladap-

tive behaviours like constant pushing lead to jamming at exits occurs due to un-coordinated

movement, termed ‘incoordination’.

In the social force model agents aim to maintain a chosen velocity. Their actual velocity,

however, is tempered by forces — some physical, and some the result of hypothesised psycholog-

ical tendencies expressed as forces — that allow agents to keep their distance from other agents

and walls. Each agent computes an acceleration dV/d t according to the following strategy (we

have simplified Helbing’s formula for the present purposes):

mi
dV

d t
= mi

v0− vi

τi
+
∑

j∈A
j 6=i

�

fa(i, j) + fc(i, j)
�

+
∑

w∈W

�

fa(i, w) + fc(i, w)
�

(1)

This equation, for agent i, contains three summed terms. The first determines a corrective

force that the agent exerts to move itself toward the desired velocity v0 by multiplying the agent

mass mi by a corrective acceleration (difference between desired and current velocity vi , divided

by a time constant τi). The second computes the force that each other agent j (from the set

A of all agents) exerts on agent i, composed of an avoidance force fa(i, j) (psychological) that

mimics i’s desire to avoid collision with j and, only for agents that touch, a contact force fc(i, j)

(physical) that models body compression and friction on i due to j. The third term models

avoidance and contact forces for each wall from the set W of walls in the model analogously to

those between agents.
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Each agent must therefore consider all other agents and the entire environment at all times,

like an n-body problem in physics. Movement, however, appears quite realistic and the model

is able to map physical body sizes and other physical measures directly into modelled space.

Model results have demonstrated properties of crowds, including arching and jamming at exits,

and the ‘faster is slower’ paradox.

4-Ped model

Blue and Adler developed the first cellular automaton (CA) simulation of pedestrian behaviour

(e.g. 1998) and eventually extended this model to a four-directional pedestrian simulation on a

toroidal grid (2000). Their modelling efforts were inspired by previous CA models of vehicle

traffic, but they noted that the different conflict situations that pedestrians could be in required

a pedestrian-specific model.

Blue and Adler were concerned primarily by highway traffic planning for pedestrians, and

were not motivated by an interest in crowd dynamics per se. Their analysis was based on slowing

of pedestrian traffic due to interference from crossing flows, initially in one dimension, and later

with two, or m-dimensional flows.

Their model was able to replicate their observations of dynamic lane formation in Grand

Central station in New York.

The Floor Field model

The floor field model (originating in Burstedde et al., 2001) aims to reproduce crowd behaviour

in a cellular automaton, using principles analogous to those used by swarm intelligence (e.g.

Bonabeau et al., 1991). As the floor field model will be used as the foundation of the method-

ology demonstrations of chapter 6–8, we shall confine ourselves in this review to the essential

themes of this model; an in-depth description of the model will be presented as chapter 5.

The modelled space is divided into square grid cells, holding up to one agent per cell. The

cells are also a convenient co-ordinate system for continuous or particle-based representations

of information called fields. Just as a set of temperatures can be obtained from various locations
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in a room, collectively referred to as a ‘temperature field,’ so can the grid squares anchor a set of

information that has values at particular locations in the modelled space. This information can

then be accessed locally by an agent in making movement decisions, formulated as a probabilistic

selection of adjacent cells informed by a mathematical combination of the local field values.

The basic model contains two fields, one tracking distance from the exit (static field) and the

other tracking agent movement over time in a manner analogous to ant pheromones (dynamic

field). By balancing agents’ perception of these two fields, different kinds of crowd can be

modelled. More attention to the static field causes agents to move quickly to exits. More

attention to the dynamic field causes agents to follow one another in a pattern of motion

described as ‘herding’.

In order to “avoid jamming transitions at unrealistically low densities,” the model contains an

agent memory for progress. Agents become “unhappy” if repeatedly blocked and become “happy”

again when movement resumes. This state transition corresponds to a move to a more random

movement pattern and back again. This happy/unhappy concept was dropped in subsequent

iterations of the floor field model.

This basic model has become the platform for experiments, extensions and other develop-

ments. The dynamics of the model were explored by Kirchner and Schadschneider (2002).

An additional friction parameter was introduced by Kirchner, Nishinari, and Schadschneider

(2003) to refine behaviour when there is contention for space. The model was later extended

by Nishinari, Kirchner, Namazi, and Schadschneider (2004) to support arbitrary geometries

rather than a square world. Extensions have been made to the model to support higher and

varying velocities (Kretz & Schreckenberg, 2006; Kretz, 2007). The results have been compared

to ant models (e.g. Nishinari, Kirchner, Namazi, & Schadschneider, 2006), and model results

have been compared with evacuation data in an aircraft scenario (Kirchner, Kluepfel, Nishinari,

Schadschneider, & Schreckenberg, 2003).
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3.1.2 Modelling frameworks

The MMASS framework and SCA model

The multi-layered, multi-agent situated simulation model (MMASS) (Bandini, Manzoni, &

Simone, 2002) is a framework that is more general than simple crowd modelling. The primary

aim of the framework is to recognise that, as suggested by the principles of system science,

situations unfold on multiple levels of complexity at the same time. The agent environment is

described as a graph of available sites, allowing for arbitrary geometries. Agents are modelled

as mobile or immobile and emit or consider specified fields, and change their receptive and

transmissive states according to finite state machines.

In the MMASS model, an agent can participate simultaneously in two or more simulated

multi-agent environments to find global maximum points of a measure of interest. For example,

a model is developed that helps to locate promising sites for a shopping centre, with the

shopping centre being an agent in two simultaneous layers. The first layer, a geographic

one, is a rectangular grid corresponding to a physical city. The second layer, a logical one,

is a completely connected graph with all shopping centres as nodes that models competition

amongst centres. Through simulation, the framework allows both distance and competition

functions to be optimised.

The MMASS framework has been refined specifically to study multiple pedestrians in a situ-

ated context. This refinement is termed the situated cellular automaton (SCA) model (Bandini,

Federici, Manzoni, & Vizzari, 2006). SCA gives a formal specification of agent types and their

possible states. Agents are sensitive to fields (broadcast by agents or objects) which guide

motion or trigger state changes depending on their intensity and the state of the agent. The

SCA framework has been used to model boarding, riding in and alighting from train cars. In

this demonstration of the framework, agents can be boarding, standing (on board), seated (on

board), detraining or exiting (the platform after detraining). Seats on the subway cars and

standing positions are nodes in an irregular spatial graph, as are doorway areas and platform ar-

eas. The agent states determine the way in which agents choose to navigate the space, resulting

in heterogeneous behaviour amongst agents in the same space (Bandini et al., 2006).
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Co-Fields

The co-fields formalism is aimed at unifying multi-agent systems based on swarm intelligence

under a single formalism (Mamei, Zambonelli, & Leonardi, 2002, 2004). Like the MMASS

framework, the co-fields approach is a general approach to problem solving that formalises a

general category of solutions that researchers have been using to solve problems; in this case,

the solutions involve fields (similar to the floor field model). The co-fields approach involves

agents following gradients in a space of overlapping fields, some persistent, some generated

dynamically by the environment and some generated dynamically by agents. The potential

value of this kind of formalisation is that principles can be developed from general cases that

are immediately applicable to more specific implementations of the ideas in the formalism.

The floor field model — even though it does not directly reference co-fields — is the major

representative of the co-fields approach in crowd modelling. The co-fields formalism, however,

has been used to investigate pedestrian situations (e.g. patrons moving through an art gallery

looking for guides). Unlike the restricted CA implementation of the floor field model, the

increased generality of the co-fields system allows agents to perform more processing than is

anticipated by the floor field model. This is because agents are not restricted to a probabilistic

movement system, are not forced to access information locally (although implementations may

choose to do so) and can combine, process, and modify the fields in any way the modeller

intends.

3.1.3 Models distinguished by their psychological focus

MACES, PMFserv and HiDAC

The MACES model (Pelechano, O’Brien, Silverman, & Badler, 2005) aims to consider what

happens when a building is evacuated and some agents have limited knowledge of the building.

It contains two separate systems. The first, or high-level, system is a wayfinding system that

aims to allow communication of route knowledge between agents, allowing them to synchronise

their mental maps. The second, or low-level, system is a social force panic-based evacuation

simulation that exploits the high-level system’s route finding behaviours.
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An interesting aspect of the MACES model is the high-level wayfinding system. It divides

agents into three categories: trained leaders, untrained leaders and followers. Trained leaders,

such as firefighters, are presumed to have full knowledge of the building and will assist others.

Followers will explore the building unless in the presence of a leader in which case they will

simply follow. Untrained leaders will explore and lead followers, but do not have perfect

knowledge of the building.

These researchers have noted the general lack of psychological relevance in crowd simulation,

saying that current models “lack a wide variety of behaviours based on demographically and

culturally validated behaviours” (Pelechano et al., 2005). In order to remedy this, they have

decided to introduce a more complex psychological model for individuals as a complement to

the MACES system, namely PMFserv.

The PMFserv environment used allows researchers to represent facts symbolically in long-

term memory, allow short-term access to this data using a blackboard structure, and influence

retrieval and processing of the information. Stress, coping styles, physiology and memory are

variables in this system that determine access to cognitive resources. Available actions are rated

based on an emotional model to determine a course of action, which is sent back to the MACES

system for implementation.

The current conception of this model, HiDAC (Pelechano, Allbeck, & Badler, 2007), is aimed

at realistic computer graphics of crowds, improves the efficiency of the model by confining

processing of neighbouring agents to those within the current room, and also includes additional

psychological effects including effects on the low-level system controlling pushing forces and

desired velocities.

Fridman and Kaminka

Natalie Fridman and Gal Kaminka aim to find a single algorithm which would naturally account

for many different crowd phenomena, based on the perceptions and actions of psychologically

plausible individuals (Fridman & Kaminka, 2006). Their approach is motivated by LeBon’s view

of crowd psychology (1895/1960) which suggests that individuals in crowds self-homogenise
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through processes of imitation and contagion. Specifically, they have selected Festinger’s Social

Comparison Theory (Festinger, 1954) as a psychology for agents. According to this view, agents

compare themselves with others — especially as similarities become higher — and take steps

to reduce differences between the self and others. They have evaluated their model using lane

formation, for which some empirical data is available, and have reproduced known properties

of this phenomenon in corridors.

Virginia military simulation

Researchers at the Virginia Modelling Analysis and Simulation Center are working on simulating

crowd psychology in the context of military models of troop strategy when simulated troops are

deployed in urban environments. Accordingly, their strategy (Nguyen et al., 2005) is to model

individual levels of aggression, but quickly move this to the level of groups within the crowd. The

main psychological variable measured is the ‘group aggression level’ which is used to motivate

and animate a group leader that the remaining individuals are assumed to mimic. Behaviours

are tied to this aggression level such that an aggression level of ‘avoidance’ implies the behaviour

‘flee from’ and an aggression level of ‘aggression lethal action’ leads to the behaviour ‘shoot at’.

Their view of crowds is motivated by the suggestion that crowds are composed of sub-crowds

and individuals (Musse & Thalmann, 2001). Although it is possible in this view to have group

sizes of 1, the focus of creating sub-groups in the model is to reduce computational effort.

MASSEgress

The MASSEgress model (Pan, Han, & Law, 2005; Pan, 2006) is a microscopic crowd simulator

that aims to study the effects of human behaviours such as competitive and queuing behaviours,

understanding them from the point of view of known human behaviours in crowd environments.

Like us, Pan was motivated by the body of work investigating human behaviour in crowd

situations, and their lack of representation in crowd models. The research is aimed specifically

toward understanding human behaviour in the context of building engineering and design. The
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simulator emphasises a rule-based psychological simulation, providing the minimal physical and

environmental simulation required to model agent movement within the space.

3.2 Critique of previous models

Have Sime’s concerns been taken into account in microscopic modelling? We take Sime’s

concerns to be that crowd dynamics (and indeed all human movement) must be understood

as an interaction between people and spaces. On this view, an appropriate model must take

into account both psychological and physical aspects in simulating crowds. Although each of

the approaches to modelling just presented has been instructive in its own way (indeed some

have generated great understanding of crowd dynamics) we believe they do not properly take

account of Sime’s concerns. Let us consider each of the models described to substantiate this

view.

3.2.1 Microscopic models

We have been guided thus far in our study by Sime’s observations that crowd models in engi-

neering do not take account of our knowledge of human behaviour. People in crowds retain

their cognitive abilities and panic, as an irrational and self-defeating behaviour is so rare as

to be undocumented on any significant scale in even the worst disasters studied. It therefore

seems reasonable that microscopic models of crowd dynamics must avoid including irrational or

panic-based behaviours on a large scale, and should instead put an emphasis on cognitive and

behavioural simulation. In this, the microscopic crowd models we have considered are lacking.

Social force model

The social forces model is explicitly identified as a large-scale panic model, aiming to “model

the collective phenomenon of escape panic” (Helbing et al., 2000b). This explains the general

lack of deliberation by agents, and why they have homogeneous behaviour; its agents are

interchangeable, operating on the same information to the same ends. This model is better

viewed as a particle dynamics simulation, with the addition of a limited internal drive that allows
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for inter-agent repulsion. The avoidance and social forces within the model, although suggestive

of human factors, more closely resemble magnetic interactions than anything analogous to

human psychology. This is similar to the attraction-repulsion framework used by some animal

aggregate simulations (e.g. Boids: Reynolds, 1987) that has been criticised on the basis that

it is a poor simulation of the mechanisms of aggregation, and leads to poor agreement with

real aggregates (Schellinck, 2008). This, combined with the model’s focus on unrealistic panic

behaviours indicates that it does not take account of Sime’s concerns.

Floor field model

The floor field model was inspired by a desire to extend vehicular cellular automata to the

domain of pedestrian simulation (Burstedde et al., 2001). It has been used to study several

different pedestrian phenomena — notably bottlenecks at an exit during evacuation (Kirchner &

Schadschneider, 2002). The floor field model unfortunately follows the social force model in

identifying panic as a likely outcome of some situations, but takes the positive step of modelling

‘normal’ conditions as well.

The normal conditions, however, do not seem to accord with Sime’s view of what constitutes

a proper understanding of human behaviour in crowds. The model specifically avoids modelling

cognitive behaviours: “To keep the model simple, we strongly emphasise the principle to provide

the particles with as little intelligence as possible and to achieve the formation of complex

structures and collective effects by means of self-organisation. Effectively there is absolutely

no intelligence. . . in our model” (Burstedde et al., 2001). In our view this is not a strength

of the model; collective crowd phenomena must be understood as self-organisation, but this

does not argue for non-consideration of human behaviour. Although doing so may simplify the

model, it is our view that in so doing the model becomes oversimplified. It is our thesis that

crowd dynamics must be viewed as self-organisation of humans, rather than self-organisation of

particles.
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The floor field model, as originally conceived, contains a parameter in each agent that

controls whether it is ‘happy’ or ‘unhappy’. This labelling suggests an emotional model (sug-

gesting a human factor) of frustration at being forced to remain still. The authors indicate it

was introduced “to avoid a jamming transition due to obstacles at unrealistically low densities”

(Burstedde et al., 2001) by reducing an agent’s commitment to a bad situation. Although it was

introduced to solve a technical problem (rather than to specifically address the lack of human

factors) this was a step in the right direction. This parameter was removed from the model in

the next iteration, however, so it is fair to say that the floor field model is not intended to be a

human factors model.

Due to its cellular automaton structure the floor field model considers all agents to be

identical. Similar to the social force model’s avoidance forces, in the floor field model it is the

following behaviour that seems less cognitive than magnetic. Unlike the social forces model

the floor field model does not take account of crowd forces and so does not model agent safety.

The floor field model, like the social force model, is an acknowledged particle simulator, rather

than a simulator of humans in crowds. Accordingly we conclude that it does not take account of

Sime’s concerns at present.

Despite these problems with the floor field model, it does make a very good base for a

multi-agent system that can model human behaviours. This is because its discrete grid structure

and local processing by agents is highly compatible with a multi-agent strategy and is quite

extensible. Accordingly, while the model cannot take account of Sime’s concerns, we will adopt

it as our basic model, using it to demonstrate (in chapters 6–8) how Sime’s concerns can be

addressed within a microscopic model.

4-Ped model

Blue and Adler’s 4-Ped model is aimed at reproducing an observed movement behaviour of

pedestrians, and does not aim to simulate independent pedestrians making individual decisions.
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3.2.2 Modelling frameworks

Neither the Co-Fields or the MMASS models are explicit models of crowd dynamics. Both are

theoretical frameworks that aim to document an approach applicable to the modelling of many

different kinds of multi-agent and CA situations, respectively.

Co-Fields

The Co-Fields model suggests the paradigm that agents sensitive to distributed data structures

may make local decisions that will result in certain emergent properties by the set of all agents.

This research has been utilised to obtain certain conformations of agents in space and model

typical swarms such as ants (Mamei et al., 2002) and to distribute humans in a gallery using

radio-based network nodes that suggest destinations for tourists (Mamei et al., 2004). The latter

study is less a study of crowd dynamics, and more a physical realisation of a computational

problem.

MMASS and SCA

The MMASS framework, by contrast, is a formal specification of a general CA agent environment.

Agents in the MMASS framework as currently conceived have a low cognitive capacity, as agents

do not integrate multiple pieces of information found locally. Although MMASS agents do have

a rudimentary internal state, changes in these states are triggered by simple presence of a single

field above a threshold value.

It has been noted (Mamei et al., 2004) that Bandini’s MMASS framework, although it does

allow for rudimentary internal agent state, has an external trigger system that places the decision

making outside the purview of the agent. The Co-Fields framework is more flexible in that agents

are able to assimilate information and make decisions locally but it really represents more of a

modelling guideline than an implemented system for modelling crowds.

Regardless of their individual merits or strengths, it should be noted that neither of these

frameworks is a crowd model. In and of themselves, these two frameworks do not take Sime’s

concerns into account. Such account can in principle be taken by any modeller using the
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framework to study crowds. The Co-Fields formalism has not been directly used to study crowds;

the floor field model, discussed above, is the closest such implementation (although it was

developed independently).

As discussed in section 3.1.2, the MMASS framework has been applied specifically to crowd

environments in a formulation dubbed situated cellular automata (SCA) (Bandini et al., 2006).

The SCA approach focuses attention on heterogeneity in crowds, allowing agents to change

their movement goals based on extraction of information from the local environment. This is

a positive step with reference to Sime’s concerns, helping to understand people’s behaviour in

context, and the rigorous formality of the specification is an asset in understanding some of

these behaviours.

We find that this formality, however, tends to make the approach rigid. Let us consider agent

communication as an example: An agent a1 in state s, broadcasts a field that, when perceived

by another agent a2, alters a2’s state. In reality people decide to communicate, and seldom

communicate continuously (i.e. continuous yelling). The formal model can not accommodate

this, however, as fields broadcast indiscriminately and continuously. As there is no room in

the mathematical formalism to introduce logical operators that might simulate selective or

probabilistic communication, interruption of the broadcast would entail altering the agent’s

state. Creating additional states to account for logical processing like this could overwhelm the

model (or modeller), and introduce questions of how these changes of state would be triggered

within the formalism.

Our view is that describing human factors in a computational model rather than a mathemat-

ical framework affords more flexibility to create human behaviour simulations at the microscopic

level. Additionally, the SCA model does not provide for a force or safety simulation. In this

respect it may depart too much from the physical situation being modelled and is limited in

terms of the effects that can be studied. Although the SCA framework is on the right track in

terms of increasing relevance to people, we will adopt a different approach.
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3.2.3 Models distinguished by their psychological focus

Fridman and Kaminka

Fridman and Kaminka are approaching this same divide between engineering and social psy-

chology but start from the opposite side. They have looked to psychology in an effort to find

a single theory that can explain human aspects of crowd behaviour, providing different crowd

behaviours in different contexts. They have adopted LeBon’s explanation for ‘mob psychology’ in

which people in groups tend to compare themselves and minimise difference (1895/1960). The

authors argue from LeBon’s position that an essential aspect of crowds is their homogeneous

nature: “the participants act as if governed by a single mind, despite using little or no verbal

communications” (Fridman & Kaminka, 2007). Accordingly, they have adopted Festinger’s social

comparison theory (SCT), taking a microscopic view and aiming for “a single computational

mechanism — a single algorithm — which would account for different crowd phenomena by

virtue of the actions and perceptions available to each individual” (Fridman & Kaminka, 2007).

We do not believe that the single mechanism of Festinger’s difference-reduction theory can

account for human behaviour in crowds, and so on this point we disagree with the authors.

The position that people in crowds do not communicate, behave identically and homogenise

is in direct conflict with Sime’s observations and our discussion of human behaviour in crowds

(chapter 2), particularly Johnson’s reports that crowds are anything but homogeneous. In our

view the model risks oversimplifying cognition in crowd behaviour.

One reason to focus solely on a single psychological theory (such as SCT) to introduce human

behaviours into a microscopic crowd modelling context is to evaluate whether that theory’s

predictions are sufficient to explain mechanisms of social behaviour within the individual.

Occam’s razor argues that such a theory, should it be shown sufficient, would be superior to a

looser collection of interacting theories of internal psychological forces. Our interest is slightly

different, however, as we make no claims as to the underlying mechanisms for social psychology,

aiming instead to model emergent crowd-level consequences of social behaviours that are known

(or suspected) to be relevant to crowd dynamics. Thus for us what is important is the ability to

represent these behaviours at the heart of the microscopic model; the flexibility to use multiple
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computational techniques is an asset, and so we also reject the contention that a model that

uses a single mechanism (SCT or any other) is a better computational model. We prefer a

strategy that more loosely allows for different cognitive behaviours to be simplified differently,

and implemented in the best way that allows them to be fused with the microscopic rule set.

Despite our disagreement with Fridman and Kaminka on the points of SCT as a single

psychological and computational model for crowd behaviour, there is much to commend in the

approach taken. In particular, the authors provide a microscopic implementation of SCT, using it

to analyse group formation and lane-formation in bidirectional flow. Microscopic implementation

of any human behaviour in crowd dynamics is welcomed in any form. Also, we do not wish

to claim that difference reduction never occurs in crowds. A more likely conception of this

phenomenon may be localised within the crowd (e.g. a crowd member helping injured people

after seeing another doing so). There must, however, be a limiting factor for this as we have

seen that crowds are heterogeneous.

Virginia military simulation

This military model considers emotional-cognitive behaviours but the focus of the model is to

generate behaviour for battlefield simulations, not to create crowd safety simulations. As such,

the emphasis on simulating aggression seems like a mismatch for the questions we wish to

answer. Indeed, incidents of aggression are far from the forefront in crowd safety research -

researchers report widespread helping behaviours and miscommunication instead. The model

bonds a psychological simulator to a separate movement simulator, an approach we discuss

below, and which we do not favour.

MACES + PMFServ

Like several models and frameworks discussed above, the MACES + PMFServ model takes an

interest in human behaviour in crowd modelling (Pelechano et al., 2005), in this case in a

building evacuation scenario. The model explores the contribution to behaviour that occupant

roles (e.g. leader vs. follower, trained vs. untrained) play in evacuations. Exploring social roles
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in the context of a crowd model is applicable to Sime’s concerns, and we shall mention this in

section 7.7, although we shall be leaving it to future work.

Despite the promising research goals, however, we find the model is not conducive to our

present purposes for three reasons. First, it uses the social forces model as the basis of its crowd

movement simulation. This leads to a focus on panic behaviours and movements that are out of

sync with our current conception of crowd behaviour, and seems at odds with the researchers’

statement that models are lacking in “demographically and culturally validated behaviours”

(Pelechano et al., 2005).

Second, the model is not set up for microscopic communication. Agents within a space are

assumed to be able to communicate over any distance. Although this may be appropriate in tiny

compartments such as in an apartment, it is not appropriate for spaces of larger size, as we have

seen in Johnson’s reports of the difficulty of communication at Riverfront Coliseum (section 2.2.3;

Johnson, 1987b). More realism in perceptual mechanisms is desirable for microscopic crowd

modelling.

Third, the modellers have chosen to couple the panic movement simulator to a large cognitive

architecture (PMFserv). This architecture considers emotion, stress, and environmental factors

on information retrieval and processing capacity, and includes a model of short-term memory

for both spatial information and declarative facts. While this complex cognitive psychology is

not out of place in a crowd simulation it may be so in a microscopic crowd simulation; the

quick step from no psychology to a complete cognitive architecture is a very big step to take.

Observation of a macroscopic psychology is difficult, and this precludes a connection between

rules and emergent behaviour. We aim to identify the effects of introducing human behaviour

into the model without raising new questions about what part of the cognitive architecture is

responsible for the new emergent effects. See section 4.2.1 for more on this point.

MASSEgress

The MASSEgress framework (Pan et al., 2005; Pan, 2006) is a model aimed specifically at

engineering buildings for safe egress. Like us, the authors express concern with the lack of
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human behaviour in pedestrian modelling. This concern leads to the creation of a new model, a

cognitive simulation that is based on decision trees. Our approach differs; following Sime, we

believe that cognitive factors must be balanced by physical and environmental factors in crowd

simulation. The MASSEgress framework bases crowd behaviour largely upon psychological and

social dynamics, with a simplistic physical simulation and no force modelling. This limits its

applicability in situations where large numbers of people are interacting and physical forces

interact with social and psychological factors.

The MASSEgress model was almost entirely demonstrated as an egress simulator. Despite

the focus on human behaviour, the MASSEgress research appears to have missed the opportunity

to study how the introduction of these behaviours into a crowd simulation affects outcomes

(and by extension, how the absence of these behaviours may represent a problem with current

models). There is minimal investigation of how variation in human behaviour affects egress

times, and no ability to simulate how changes in human behaviour affect pedestrian safety. The

focus seems to be upon using the model to predict evacuation times rather than to understand

emergent crowd behaviour.

3.3 Discussion: The problem with microscopic models

We are not aware of a microscopic crowd model that takes account of Sime’s concerns by

integrating a simulation of microscopic physical factors (such as crowd pressures and forces)

with a microscopic behavioural simulation. We have considered a number of microscopic models

of pedestrian movement and crowd dynamics. Some are concerned predominantly with physical

and movement simulation; others focus on psychological and behavioural factors. No model

reviewed has satisfactorily integrated these two aspects of crowd behaviour in a microscopic

context. This means that the microscopic modelling community is not able to study emergent

crowd behaviours in the context of individual rules based on both physical and behavioural

factors. As real-life crowd situations involve interaction of both of these domains, it is our

contention that the lack of such a model is an impediment to understanding crowd dynamics.
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As we have seen, panic is a compelling concept that continues to crop up in crowd models

— particularly in physics-based models, but also in some behavioural models. Although the

problem may be lack of knowledge of the social sciences’ arguments against panic, there is

another reason why panic is compelling for crowd modellers: Because panicked individuals are

assumed to exhibit behaviour that is irrational and free of social constraints, the modeller is

relieved of the responsibility to simulate cognitive/psychological/behavioural aspects of crowd

dynamics. The result is agents that are non-cognitive; specifically they are non-rational (taking

actions that do not make sense), non-deliberative (containing no mental state or processing) and

interchangeable. This in turn reduces the complexity of the model, and encourages techniques

used traditionally to model inanimate objects. Although the panic assumption may be convenient

in that it reduces complexity, it means that the behaviour modelled is at odds with our concept

of what people do in crowds. This opens a model to the criticism that its results cannot be

meaningfully applied to people because it is not a model of people.

3.4 Summary

We have reviewed a number of microscopic models and found them to be unsatisfactory in

taking account of Sime’s concerns. It is our contention, then, that the lack of a panic-free

model that microscopically integrates both physical and behavioural factors is an impediment

to understanding crowd behaviour, because only such a model could be legitimately applied

to crowds of people. Our identification of this problem, then, leads directly to our research

objective.



Chapter 4

Microscopic Human Factors

In this chapter we begin in earnest the original work of this thesis. In chapter 1 we introduced

Sime’s comments on balancing behavioural and physical conceptions of crowd dynamics. In

chapter 2 we discussed (among other topics) the importance of viewing people in crowds as

non-panicking rational actors, acting on the information at hand. Yet we have seen, in chapter 3,

that Sime’s comments are still very relevant in the case of microscopic models.

Inspired by the problems with the prior literature discussed in section 3.3, we first formalise

and argue for the importance of our research objective, which is to devise a method for solving

these problems. After determining what is missing from current models (relevant human

behaviour), we then fully describe our proposed solution: the Microscopic Human Factors

methodology. We present an argument for its utility and the relation between models created

with the methodology and the world. Future chapters will provide demonstrations of this

methodology in action.

4.1 Research objective

In formalising our research objective, the main problem identified by the literature review bears

repeating: The lack of a panic-free model that addresses Sime’s concerns is an impediment to

understanding crowd behaviour. The central focus of this thesis is to argue that the integration

of human and physical factors in microscopic models is necessary, possible and practical. The

research objective of this thesis, then, is specifically as follows:

47
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Research objective: To develop a methodology to integrate relevant human be-

haviours with physical factors at the heart of microscopic crowd models for the purpose

of improving relevance to people and studying emergent crowd-level effects.

This objective has value and importance in the field of microscopic modelling. This is

demonstrated first as the objective raises a number of interesting topics and questions that will

be addressed in this and future chapters, including:

• what human behaviours are relevant?

• how should such a methodology be formulated?

• how does such a methodology guide model development?

• what validity and utility do models built with the methodology have?

• does the methodology work in practice?

• can the methodology help us model behaviours that are not well understood?

A second way that we can see the value in this objective is with respect to Sime’s concerns.

He has argued that we need models that integrate behavioural and physical approaches to crowd

dynamics. Microscopic models that do take this approach will be an improvement over previous

ones (according to Sime’s concerns). We saw in sections 1.1.3 and 3.3 that part of the problem

may relate to the difficulty of generating models that account for human behaviour. The lack

of satisfactory models, as discussed in chapter 3, may be further testament to this difficulty. A

project to develop a methodology that assists microscopic modellers with this process therefore

makes a contribution.

A third factor that argues for the utility of the objective is that our models, which are

outputs of this methodology, have met with interest from microscopic modellers. All three of

the demonstrations of the methodology that we will present (chapters 6–8), as well as a short

paper concerning the methodology itself, have been accepted on the basis of peer-review for

presentation at scientific meetings or, in one case, in a journal (Henein & White, 2005, 2006,

2007, in press-a, in press-b).



49

The latter point argues for the importance of the methodology, but also points out that

the methodology itself is not the only contribution made by this thesis. The demonstrations

are contributions in their own right; as we shall see, each has shown that the methodology is

practical and generative by producing interesting results, discussion, conclusions and suggestions

for future work. When we review the conclusions and contributions of this thesis in chapter 10,

these further contributions will be included and itemised.

With the objective described, and its importance asserted, we now generally turn to the

work of creating the methodology. In the next section we take up the first question from our

list, above: What is a relevant human behaviour? Answering this question will carry us to the

specifics of the methodology.

4.2 Relevant human behaviour

As stated in the research objective, our methodology targets the integration of relevant human

factors into microscopic models. We cannot model everything about people, and so we must

narrow the scope of the methodology to what is most important.

4.2.1 The relevance of information processing

What are the most relevant human factors that must be incorporated? Sime’s ball-bearing

criticisms were directed toward treatment of people as non-thinking objects and we generally

agree with this focus on cognition as the defining characteristic of people in crowds. (Panic,

which could have derailed this position through an argument that cognition is essentially disabled

in crowds, has been discredited as non-explanatory.) Dawson has asserted that the hallmark

of cognition is information processing (1998), and the central assumption of cognitive science

is that “the human mind is a complex system that receives, stores, retrieves, transforms and

transmits information” (Stillings et al., 1987). This suggests introducing cognition into modelled

agents through information processing.

Accordingly, one way to approach the problem would be to simulate a complete cognition

for agents in the form of a cognitive architecture (e.g. ACT-R, Anderson & Lebiere, 1998).
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Although this approach might improve relevance to people, it does not satisfy microscopic

modellers because it negates one of the key benefits of microscopic models: the establishment of

causal connections between emergent macro-level crowd effects and their origins in individual

behaviour. Simple agent rules give way to a complex cognitive simulation that tends to be

analytically opaque (as cognitive architectures are emergent systems themselves). This can lead

to problems of scale in which the macroscopic cognitive layer overpowers the microscopic crowd

model; the latter becomes little more than an arena, relegated to simulation of the physics and

movement of agents, and is divorced from the real action unfolding (potentially on a different

time-scale) within the cognitive simulator. This disconnection obscures the causal chain and it

becomes difficult to explain the macro-level crowd effects by reference to processes within the

individual.

Although cognitive architectures have many benefits, incorporating them at the heart of a

microscopic model would be a challenge. It is not necessary, however, to import a complete

cognitive architecture in order to model human behaviour in microscopic models.

4.2.2 Behavioural repertoire

Any model is, by definition, an abstraction that discards detail through simplification in favour

of explanatory power. Because of the focus on emergent dynamics in microscopic modelling,

current models abstract and simplify interactions in the domain of the individual; they do so by

emphasising effects rather than mechanisms at the individual level. In the floor field model, for

example, representation of physical space is highly stylised and so is knowledge of other agents.

This is what allows a microscopic model to use simple rules at the individual level to produce

complex emergent effects at the crowd level. In order to produce a scale match, our integration

of human behaviour must follow similar design criteria.

With this in mind, when applying Sime’s concerns to microscopic models, we accept that

cognition-free models are oversimplified, but it is not only cognition that is lacking from the

models: Human behaviour implies not only a mechanism for processing information but also a

rich behavioural repertoire available for deployment by this cognitive mechanism. When we call
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microscopic models into question because they ‘do not do what people do,’ we are bemoaning

the lack of this behavioural repertoire.

As microscopic modellers of behaviour, we are less concerned with processes internal to an

individual and more concerned with the behavioural actions of individuals — as it is these that

collectively produce emergent effects. Our methodology for integrating human behaviours, then,

recognises the microscopic focus on modelling effects rather than mechanisms at the individual

level. In a microscopic context, cognition is important to behavioural simulation in its role as

support for behavioural repertoire; it is, then, secondary to behavioural repertoire. In other words,

it is the absence of repertoire — more than the specific cognitive process that underlies it — that

calls into question the models’ applicability to human crowds.

On this view, we can take Sime’s ball-bearing complaints into account by extending the

behavioural repertoire of agents. Our approach is to implement cognitive behaviour and be-

havioural actions at the same level of abstraction at which the microscopic models currently

simulate movement (rather than representing formal models of cognition through a cognitive

architecture). Consequently, our methodology expresses human characteristics as simple local

rules,1 fusing them with the simple local rules of the microscopic model. We call these simple

local rules microscopic human factors (MHFs). The methodology is characterised by simplified

information processing that triggers behaviour and supports its unfolding over time where re-

quired. This simplified view of the human behavioural repertoire reduces the complexity of

the cognitive simulation required; this brings the human factors modelling into scale with the

existing aspects of the microscopic model. This technique ensures that the causal connection

between emergent crowd behaviours and the local agent rules is not broken.

In short, by reducing the fidelity of the cognitive simulation (instead focusing on behaviour)

we adopt the same strategy that microscopic modellers have used to simulate physical aspects of

the simulation. This reduced fidelity is warranted because our goal is not to explain intra-agent

processing but rather to induce emergent effects by grouping many agents together.

1A terminological note is in order on the use of the word rule in describing mechanisms of microscopic models.
We use this word in the broad sense of “a principle, regulation, or maxim governing individual conduct” (Oxford
English Dictionary, 1989).
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Let us take the floor field model as an example of the value of including information-

driven behaviours. Currently in the floor field model, interchangeable agents have one fixed

movement goal that is not changed based on information obtained from the environment. This

limited behavioural simulation is at odds with both Sime’s concerns and also with our everyday

experience of moving through crowded spaces. We know that people do not all have the same

goals, and, especially in unfamiliar environments, may change goals multiple times. We can alter

the microscopic simulation by providing a simulation of changing goals (see chapter 7). This

alteration, even if based on a simple information-processing framework within an individual

agent, can produce an improvement in our understanding of collective crowd behaviours as per

Sime’s arguments.

We now turn to an explanation of the Microscopic Human Factors methodology for adding a

human behaviour to a microscopic model.

4.3 The Microscopic Human Factors methodology

The purpose of the methodology is to provide a framework for describing human behaviours

that guides modelling of human behaviours as simple rules, integrated tightly with microscopic

models. The methodology is general; while we demonstrate its use concretely in the floor field

model (chapters 6–8), it is equally applicable to other microscopic models as implementation

formalisms.2 The methodology does not place limitations on the types of behaviours that can be

modelled, but rather enforces the perspective of the individual in the crowd in explaining crowd

mechanisms.

Our depiction of the methodology begins from a description of the behaviour in real crowds,

guiding the modeller to focus on crowds as crowds, and not on other systems (e.g. seeds in a

hopper) as metaphors for a crowd. We then explain how the methodology makes the theoretical

contribution of the model explicit, by specifying the essential aspects of the behaviour in the

language of individual people. We explain the importance of selecting a good formalism for

2Although the methodology is neutral on the question of implementation formalisms, that does not mean that all
such formalisms are equally well suited to microscopic modelling of human factors. Our preference is for multi-agent
systems, and we have discussed the appropriateness of this formalism in sections 1.3.2 and 5.1.
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translation of these essential aspects into an implemented model. We shall then turn to a

discussion of the validity of models built using the methodology.

4.3.1 The three levels of the methodology

The methodology requires three distinct descriptions of a behaviour of interest at three different

levels (see figure 2). Each level, or layer, is a complete description of the behaviour at a

different level of abstraction. Each of these three distinct descriptions is an important part of

the methodology, and each level provides a locus for a different conversation about the crowd

behaviour, and its origins in individual behaviour. By separating the description into levels,

these conversations are made more precise, and each offers an opportunity to discuss a different

aspect of the modelling process.

We shall consider each level, its purpose in the methodology, and the types of questions that

can be asked at each level. As we move through the levels we shall use a trivial example human

behaviour to illustrate the three descriptions: that of selecting a line at a supermarket (figure 3).

Specification. The first level of description is a clear statement of how a crowd behaviour, or

aspect of crowd dynamics, occurs in the world. This may be a description of a well-understood

behaviour, or a hypothesised behaviour for study. Its purpose is to develop a theoretical specifica-

tion or mechanism for the behaviour proposed. As real cognitive systems — unlike microscopic

cognitive simulations — are highly interconnected and complex, no model can account for all of

crowd behaviour in one simulation. It is important to be clear about what is being modelled,

and this level places a boundary around the simulation of interest. A clear specification of what

is being simulated provides both a starting point for modelling, and a desired end point for

microscopic simulation. At the specification level, discussion is at the level of real-world crowd

behaviour and there is no need to discuss agents or modelling practicalities. Disagreement at

this level suggests uncertainty about how people behave in crowds and why; in the case of more

speculative research it is at this level that we present our hypotheses about crowds.

In figure 3 the specification is of the hypothetical type. Note that the description is given

in terms of the behaviour of real shoppers. There is no mention of agents, nor of modelling
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Figure 2: The three layers of the Microscopic Human Factors methodology. Each layer is a complete
description of the behaviour, inspired by knowledge or hypotheses about real crowds. During the design
phase the layers are created in order of increasing abstraction and specificity. During the validation phase
the validation of underlying layers supports the layers above.
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Specification. The specification requires a description of the way the behaviour works in the
real world. We hypothesise that people make several types of observations and judgements
when selecting a checkout line, in the interest of spending the least time in line. People evaluate
the number of shoppers, the contents of others’ carts and make judgements about the probable
efficiency of the cashiers. We suppose that people prefer the express line to the regular line.

Reduction. Although there are several interesting phenomena at work in the specification, we
must extract the essentials of this behaviour, and present it in an individual-focused, formalism-
neutral manner for modelling. Although there are several judgements and decisions being made
in the specification, we have chosen to reduce these to time as the essential prediction made by
individuals. In other words, our model of line selection reduces, in a microscopic context, to an
individual’s time predictions. Our reduction assigns an approximation of the total number of
items (across carts) in a line to be the key predictor of time. It is reasonable, however, to assume
that the number of carts will also be considered, as will the type of line (express or not); these
factors will be modelled as increases or decreases in each line’s time estimation, respectively.
The judgements about the cashiers, although interesting, are determined to be non-essential in
a person’s judgement of time, and are left to future work.

Implementation. At the implementation level we introduce the notation and formalism ap-
propriate to the microscopic model of interest. In this trivial example let us simply assume
that the model provides a set of lines L =

�

l0, l1, l2, . . . , ln
	

, a determination, e(a) of whether
each line is an express line (with e(a) = 1 if line la is an express line, else 0), a set of carts
Ca =

¦

ca1
, ca2

, ca3
, . . . , cam

©

in each line la, and a weight of each cart Cab
given by w(a, b).

The implementation of our line selection algorithm is as follows. First, each line is assigned
a unitless time prediction ta (shown below) then the agent selects the line with the lowest
predicted time. The score is determined by summing the weight of the carts in line, penalising
each cart with 10 units of weight, and dividing the weight by 2 for express lines.

ta =
1

1+ e(a)

∑

b<|Ca|

(10+w(a, b))

Figure 3: A trivial example of the Microscopic Human Factors methodology at work. The task is to model
selection of a line at the supermarket.
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formalisms or constraints. We simply describe the behaviour that is to be implemented and how

we believe it works.

Reduction. The second level of description involves reduction of the behaviour to simple local

rules, and it is these local rules that we term microscopic human factors. This stage is the most

important step in the methodology, fulfilling both a theoretical purpose and a practical one.

It is at this step that an abstraction of the behaviour is developed, a theoretical position

that describes the essential aspects of a microscopic mechanism to underlie the behaviour.

The essential aspects detail what information is used by individuals to trigger or carry out a

behaviour, local sources of this information and how it is processed. They also cover physical

constraints, situational factors and physical abilities of the individuals and how the behaviour

is expressed over time. In short, this level requires a complete mechanism for the behaviour.

Because microscopic models argue from individual rules, the description at this level is from the

perspective of the individual within the crowd. Determining these essential aspects amounts to

a theoretical position about a mechanism sufficient to reproduce the behaviour in human terms.

Disagreement at this level suggests disagreement about how a particular crowd behaviour occurs

as an interaction between people and space.

From a practical perspective, understanding of the reduced description does not require any

modelling expertise because the description of the behaviour at the reduction level does not

address implementation issues (which are deferred to the next level). This is what we mean

when we say that the reduction is formalism-neutral. As with the specification level, discussion

centres on people, their capabilities and behaviours, and the effects of the situation upon them.

By keeping the discussion at the level of people while developing an abstract simple model that

captures the essentials of the specification, non-technical researchers with considerable domain

expertise can participate in the conversation surrounding essential elements of crowd situations

and behaviour. This is a key factor in taking advantage of interdisciplinary co-operation to

increase our understanding of crowd behaviour.

The reduction level exists, in part, to require a separation between simplifications introduced

for parsimonious understanding of crowd behaviour and simplifications introduced for reasons
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of modelling practicality. The reduction must be a defensible abstraction from a behavioural

perspective in order to ensure that microscopic results are ultimately applicable to human

crowds. It is not that modelling simplifications are inadmissible, but they are not hypotheses

about crowds and must be introduced for what they are: implementation constraints. By making

the reduction level explicit, the implementation formalism that most naturally captures the

microscopic human factors can be preferred.

The points of the preceding paragraphs are demonstrated in the trivial example of figure 3.

First, although the reduction is a complete description of the behaviour, we have performed an

abstraction, focusing on time as the essential representation made of the lines by the agent. This

is a theoretical position as to how the line selection behaviour essentially works. Consequently,

we provide for a correspondence between the information available to the person (load in the

carts, number of carts, line type) and the estimated time. We have identified an aspect of the

specification (cashier judgements) as interesting, but non-essential. Second, the reduction is

formalism-neutral and individual-centred; this means that the reduction has not pre-supposed

what kind of model should be used, but simply focuses on what we believe to be true from the

individual shopper’s perspective. (The reduction is equally well suited, for example, to imple-

mentation in a numerical simulation or in a multi-agent system, but only from an individual’s

point of view.) The reduction shows what we think is important about the specification, without

confusing matters by what it is practical to model using any given approach. Third, the reduction

keeps the discussion about the essential mechanisms in crowds accessible to domain experts in

supermarket planning, even those who may not be familiar with the formalism selected for the

implementation.

Implementation. What remains after the two levels just described is the level of implementa-

tion. The purpose of the third stage is to harmonise the reduction, a functional description of

the behaviour from an individual perspective, with an implemented microscopic model. This

level involves a translation of the rules into a specific mathematical/logical formalism provided

by a microscopic model. In the case of a new model, this may involve also the selection of an

adequate formalism. It is at this stage that the behaviours must be implemented in such a way
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as to interface closely with the existing rules of the microscopic model. An emphasis at this level

on scale match results in intertwining physical and behavioural rules, and the preservation of

the model’s ability to connect individual action to emergent effects. Disagreement at this level

suggests the mathematical rules or model logic are not a true translation of the reduced rules

into the model.

This level brings with it not only the advantage that, once implemented, the behaviour can

be simulated, but also that the requirement to implement is itself a test of the completeness of

the specification and reduction.

In our supermarket example (figure 3) we do not go so far as to implement and test the

behaviour (see chapters 6–8 for full demonstrations). There are, however, a few points worth

mentioning. First, the line selection is done directly using the information represented in the

model concerning lines, carts, etc. We do not need to import a separate line-selecting cognitive

architecture to sit alongside the existing model. Second, the model did not provide for an exact

translation of the reduction into the implementation. That is because the reduction expresses

time in terms of number of items in carts, while the implementation works in terms of cart

weights. Assuming this is a significant distinction, the modeller would need to argue for the

appropriateness of this alteration in the behaviour (perhaps by drawing a parallel between

weights and item counts in grocery store cart studies).

4.3.2 Validity and utility of the methodology

Validation refers to the process of determining the relationship between a model and the world.

In this section we explore the extent to which microscopic models can be validated, what they

can tell us about the world, and how the MHF methodology increases the validity of microscopic

models.

Validation of microscopic models

One thing we should not expect of the MHF methodology is that it will suddenly allow us to

do what microscopic models generally cannot: make precise statements concerning specific
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cases/situations in crowd dynamics. Microscopic models are best at studying crowd behaviour in

abstract situations, providing qualitative evidence that collective behaviours arise from specific

individual behaviours, and demonstrating mechanisms that can account for these collective

behaviours. There are several reasons why direct validation of microscopic models with human

subjects is difficult:

First, many emergent crowd behaviours of interest test the limits of a physical setting to

accommodate large numbers of people. This limits the potential for direct experimentation due

to safety concerns for participants.

Second, as microscopic modellers we are interested in understanding interactions of specific

behaviours in a massively complex system involving large numbers of cognitive actors with

incomplete information and no central co-ordination. This is very different from the types

of hypotheses that may be equally interesting and are testable in a simpler scenario, such as

a laboratory study to track the effect of a clear independent variable (e.g. signal type) on a

simple dependent variable (e.g. reaction time). The category difference here occurs because

it is precisely the complexity of the situation that is of interest. The microscopic approach

proceeds specifically though abstraction of the behaviours and a focus on qualitative evaluation.

Even in a laboratory environment, people cannot be sufficiently controlled to isolate the effect

of a behaviour of interest in the manner of a microscopic implementation. Direct human

experimentation, in short, is not a match for the qualitative, abstract focus of the microscopic

model that aims to draw general conclusions about behavioural interactions of agents.

The fact that testing with human subjects is not a good match for our purposes does not mean

that the model has no validity. We take validity to mean relevance to the model’s prototype:

human crowds. Microscopic models have much to offer in the department of relevance to real

crowds, and as we shall now see, the MHF methodology supports these arguments of validity.

Validity of the MHF methodology

One important benefit to the three-level methodology proposed is that, by isolating three different

views of the model, multiple points are introduced at which the validity of the resultant model
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can be naturally discussed. In section 4.3.1 we presented the levels in order of increasing

abstractness. Once the simulation has been made, however, the order of levels can be reversed

for the purpose of considering model validity. As we move upwards through the three layers we

can use an implemented model that has adopted the Microscopic Human Factors methodology

to answer different validation questions.

Implementation. At the level of the implementation we determine whether the microscopic

human factors have been appropriately implemented. This includes simple checking, through

experimentation, that the implemented model embodies the microscopic human factors de-

scribed at the reduction level. It also includes determining that an appropriate implementation

formalism was suggested that does not deviate from the reduction by introducing excessive sim-

plifications for reasons of implementation constraint. (Certain reductions may be very difficult

to implement, for example, in a purely numerical simulation. This is because cognitive factors

often require decision-making based on what has happened earlier in a simulation, suggesting a

requirement for memory and logical operators.)

Validation at this level helps to avoid an excessively simplified view, for example that crowds

are like seeds in a hopper, because any such position would need to be introduced as an

implementation detail rather than as an explanation of behaviour at the reduction level. Once

we note at the reduction level that people are not like seeds, the selection of this type of

implementation seems forced. Instead, the reduction level’s focus on the individual perspective

within the crowd suggests modelling of individuals as agents with simple cognitions. This

interaction between the implementation and the reduction avoids exclusion of the human

element from the simulation; this makes the results more applicable to humans, increasing its

validity according to Sime’s concerns.

Reduction. The purpose of this level is to develop simple local rules that provide an abstract

mechanism for the behaviour as described in the specification. The validation question at this

level, then, concerns whether the simple local rules actually implement the behaviour described

at the specification level. In other words, are tests run with the local rules essentially tests of the
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theory proposed at the specification level? Although there may be multiple ways to reduce the

specification to simple local rules, as discussed in section 4.2.2 we are less concerned with the

internal mechanism of agents and more concerned with behavioural repertoire; validity at this

level, then, concerns whether the behaviours generated by the microscopic human factors are

sufficient to implement our theory of how crowds work in the world (the specification).

Our trivial example (figure 3) illustrates another point relating to the validity of the reduc-

tion. In many cases the behaviour of the specification will be richer than we wish to model in a

particular abstraction, resulting in a gap between a richly detailed specification and an abstract

reduction. (In the example it was judgements about cashier efficiency that were seen to be

interesting but extraneous to the purpose at hand.) This gap is intrinsic to abstract modelling

— as is suggested by section 4.2.2 — and goes to the heart of the general challenges in vali-

dating microscopic models described above; we must create abstractions to limit the scope of

a phenomenon and achieve understanding, but these abstractions must be defended. The art

of abstract modelling is in selecting the right abstraction, a process that must be confirmed as

described in the previous paragraph. Many such gaps, however, have a practical benefit: that

of identifying areas of interesting future work — a principle that will be well-illustrated in the

demonstrations of chapters 6–8. In the limit, these pieces of future work can be modelled, and

their effects on the basic behaviour confirmed.

Specification. The purpose of the specification level is to describe a theory or hypothesis of

how a particular aspect of crowd behaviour unfolds in the real world. Thus, validation of the

model at this level implies a determination of the extent to which the model is a representation

of the behaviour of real crowds. Bearing in mind the discussion of validity and microscopic

models (above), let us consider how MHF models are relevant to real crowds.

The validation task, to be carried out through experimentation upon the model, is to show

that the specification is sufficient to explain the real world behaviour of interest. Sufficiency is

stressed here, because the specification is subject to the principles of multiple realisability: There

may be multiple versions of the specification that can produce the behaviour. To discuss how a

model that expresses sufficiency can tell us about the real world, let us consider two cases for
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application of the methodology. (Here we assume that, through experimentation on the model,

the sufficiency of the specification has been shown.)

In the first case we use the methodology to study a behaviour that is well understood. In this

case, the specification is motivated by — or derives directly from — existing knowledge. Here

the modeller can make an argument that the specification is more than sufficient to account

for the behaviour because the existing knowledge provides a reason to prefer this particular

specification over other possible mechanisms. The model can then be used to draw conclusions

about how the real world works, supported both by the MHF methodology (that makes the

claims about the world explicit) and the literature (or other reasons, that cause us to believe

these claims are well-supported).

In the second case, the methodology is used to study a behaviour that is suspected, or to

investigate ‘what-if’ scenarios. Here, the MHF model’s contributions are more theoretical in

nature. As noted above, microscopic models are generally focused on the qualitative study of

emergent effects; they are one tool to help in understanding human behaviour in crowds. Like in

much scientific endeavour, particularly in the social sciences, we look for corroborating evidence

from multiple disciplines and approaches to answer complex questions; individual methods,

such as our methodology, generally contribute by narrowing the field of inquiry rather than

through definitive answers. In this respect, the methodology proposed, with its emphasis on local

mechanisms, can contribute by demonstrating the sufficiency of individual-based human-centred

hypotheses for crowd effects.

In both cases, the model adds to our knowledge of crowd behaviour by testing the sufficiency

and consistency of a theory to reproduce crowd effects. This allows us to make in-principle

arguments about how crowds can and cannot work. Where we wish further certainty, we can

use the narrowed focus of the model to produce hypotheses that can be subsequently tested

in real crowds, or — if the hypotheses cannot be practically and/or ethically tested — make

philosophical arguments in support of their applicability to real crowds. Additional support

for the theory may derive from case studies of natural experiments, and the results of other

disciplines.
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Although multiple realisations of a particular crowd behaviour may be possible — as we

have seen in previous chapters — those that take account of Sime’s concerns are preferred.

The advantage of the MHF methodology is that it provides an explicit mechanism for taking

account of Sime’s concerns at the heart of a microscopic implementation by providing simple

local rules for crowd behaviour. This, then, is a key accomplishment of the MHF methodology:

By taking account of Sime’s concerns, we stop modelling ball-bearings and improve the relevance

of microscopic models to people. With this methodology, and the simulations derived from it,

we are in a position to better understand what emergent behaviours are likely, and to study how

human behaviours interact in a large-scale movement simulation.

Exploring the mechanism

Microscopic human factor models have much to contribute that has already been discussed

from the point of view of validation. There is, however, more to modelling than the simple

reproduction of emergent crowd effects.

These additional benefits are obtained if a correspondence is made between abstract rules at

the reduction level and the formal structures that implement these rules at the implementation

level. In so doing, the model provides a locus for experimentation with the reduced rules by

allowing the modeller to modulate or even deactivate some aspects of the simulation. This

experimentation can lead to an understanding of how and why the rules provide for emergent

crowd level effects as observed in the simulation, and how the new rules interact with previous

behaviours of the model. By extension, this provides an opportunity to determine how varying

the rules and the situation can give rise to different crowd behaviours, and hence some idea of

the range of potential crowd behaviour.
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4.4 Summary

Microscopic Human Factors

The microscopic human factors approach aims to integrate human behaviour into microscopic

models to satisfy Sime’s concerns that behavioural and physical factors are not sufficiently inte-

grated in crowd research. Having rejected the cognitive architecture approach in the microscopic

context, we propose a method centred around increasing behavioural repertoire of agents as

an interaction between the environment, the individual’s social and physical context and the

decision making process. We focus on generating behaviours that underlie crowd effects, rather

than fidelity to processes internal to the individual.

In modelling a crowd behaviour, the methodology requires three descriptions in increasing

levels of abstraction (see table 1). At the specification level, a clear description of how a crowd

behaviour occurs in the world is presented, and it is at this level that arguments are made

concerning the reasonableness of this starting position. At the reduction level, the specification

of how the world works is reduced to a series of abstract individual-centred rules that provide

for the behaviour. All modelling and implementation details are relegated to the implementation

level, at which the reduced rules are translated into a specific formalism for simulation.

The levels of the methodology support validation concerns at each level. These relate to

formalism appropriateness, implementation fidelity, sufficiency of the rules and culminate in an

argument concerning the sufficiency of the specification and its role in supporting understanding

of crowd behaviour with other disciplines. Models built according to the MHF methodology

Table 1: Summary of MHF methodology levels, their content, purpose and value in validation

Level Design Goal Vocabulary Used Validation Goal

Specification Theory about world People in crowds Theory sufficient to account for
real-world behaviour

Reduction Essential situated rules Individuals in crowds Rules sufficiently capture
essence of specification

Implementation Integration with model Formalism-specific Implementation corresponds to
rules
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(with the additional requirement of correspondence between the reduction and implementation)

support experimentation to identify how the modelled rules bring about the behaviour of interest,

and variation in crowd behaviour.

The levels also highlight that different objections to a model are possible at different levels.

Objections at one level may not invalidate work at another level. For example, there may be

legitimate differences in opinion between domain experts on the very questions that must be

answered to make an implementable model. This methodology localises this disagreement at the

specification level. By creating a different specification for each position, satisfactory reductions

of each position to rules is possible, and these models may shed light on the disagreement itself.

In other cases, the objections may be more at the level of implementation, with generally agreed

specifications and reduction but criticism that modelling simplifications introduced changes to

the rules. Isolating these issues to particular levels of the methodology results in increased

clarity in the academic debate.

Research objective, relevant behaviour and the goals of the methodology

We began this chapter — inspired by the problem identified in section 3.3 — with our research

objective:

Research objective: To develop a methodology to integrate relevant human be-

haviours with physical factors at the heart of microscopic crowd models for the purpose

of improving relevance to people and studying emergent crowd-level effects.

We identified a lack of behavioural repertoire as our focus in the development of our method-

ology. We developed a methodology whose key goal is to represent human behaviour as simple

local rules at the heart of microscopic models, to support models that can take account of Sime’s

concerns and shed light on the mechanisms of emergent crowd effects.

We shall present concrete examples of the methodology at work in chapter 6–8, and we shall

discuss the performance of the methodology in these demonstrations, as part of the general

discussion, in section 9.2. In the demonstrations, a consistent underlying formalism will be
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used: that of the floor field model. Accordingly, before we turn to the demonstrations of the

methodology, we present the details of the floor field model’s implementation.



Chapter 5

The floor field model

As previously discussed, we have found the floor field model cellular automaton to be an excellent

formalism for implementing models that use the Microscopic Human Factors methodology.

We will be using this formalism in chapters 6–8 for all three of our demonstrations of the

methodology. In order to clearly express work based on the floor field model, a description of

the base model is required; the purpose of this chapter is to provide such a description.

The floor field model (Burstedde et al., 2001) has proven to be full of potential, and has

been the subject of a number of refinements and extensions. As such it is necessary to select

a point in time that serves as a baseline for our work. We have adopted the model as it

was presented in an exploration of the floor field model’s applicability to egress simulation

(Kirchner & Schadschneider, 2002), which allows us to relate our egress results to a comparable

characterisation of the floor field model.

5.1 Cellular automata and Multi-agent systems

Formally speaking, the ontology of cellular automata does not include mobile agents; as in

figure 4a, grid cells only exist in a particular state (here, either occupied or empty). Clear rules

operate on a cell-by-cell basis to specify when a cell will change state. What is sometimes termed

movement in a cellular automaton is more formally described as a transition between states in

two adjacent cells (here, from occupied to empty in one cell, and from empty to occupied in
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EmptyEmpty Empty

EmptyEmptyEmpty Occupied

Occupied

a. Movement in a cellular automaton. Two separate state transitions: Left cell gets Occupied→ Empty and
right cell gets Empty → Occupied.

Agent

x = 5

Agent

x = 5

b. Movement in a multi-agent system. Note mental content (here, x = 5) moves with agent.

Figure 4: Comparison of state and movement in a cellular automaton and a multi-agent system. In
this case, space is one-dimensional. Upper boxes in each sub-figure represent time t = 0, lower boxes
represent t = 1.
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the adjacent one). As information is not copied between cells in a cellular automaton, formally

representing complex internal state in a “moving” agent is non-trivial.

By contrast, a multi-agent system of the type described in our work retains the discrete

geometry of the cellular automaton and introduces an additional concept: agents that have

encapsulated internal state (analogous to mental content). On this view, the grid provides

co-ordinates tracking agent position, and allows the assertion of exclusive occupancy of a cell.

Location, then, is seen as a property of the agent, and movement naturally preserves internal

state (figure 4b).

Despite these formal differences, it is possible to conceive of the floor field model as a multi-

agent system rather than as a cellular automaton, as the concepts of the model are well-suited

to such an expression. As discussed in section 1.3.2, the individual focus of the multi-agent

approach is a natural fit for modelling social systems, and we have found this approach to be a

good match for the Microscopic Human Factors methodology. Thus, we here describe the floor

field model in multi-agent terms, rather than as a cellular automaton.

5.2 Design of model

The floor field model, according to our agent-based restatement, is a microscopic crowd model

of individuals. Agents are initially distributed at random on a 2-dimensional grid that provides

a co-ordinate system, both for movement and for maps of information available to agents called

fields. Agents move according to local rules, balancing their movement decisions between

reducing distance from desired goals and following other nearby agents. The floor field model

as originally specified does not provide for individual cognition beyond combining the two

perceptions just described. (A complete algorithm for the model will be presented on page 77.)

5.2.1 Physical environment

Movement. In the floor field model, agents have a single action: they move. The discrete time

evolution of the model thus considers the dynamic and unfolding occupancy of cells. Agents

move a distance of zero or one cell per time step, and movement occurs in parallel. Because cells
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can hold at most one agent, this parallel update ensures that if two agents attempt to move to

an unoccupied cell a random agent will succeed. (For an alternate mutual exclusion procedure,

see Nishinari et al., 2004.) Due to the cell selection rules (see below), in the floor field model

agents only try to move to unoccupied cells.

Walls and exits. Certain cells within the space (e.g. around the perimeter of the modelled

area) can be designated as wall cells. These cells are unavailable for movement. For the purpose

of modelling ingress or egress behaviours, the floor field model contains designated exit cells,

generally within the walls. Agents move onto these cells as usual and occupy them for the

duration of the time step. The next move of an agent occupying an exit cell is to disappear from

the model.

Cell adjacency. The model uses the Cartesian directions in determining cell adjacency. In

other words, allowable movement directions on the two-dimensional grid are North, South, East

and West. (In the floor field model it is often required to speak of the possible cells an agent

could move to in the next time step. This is called the neighbourhood and includes the four

adjacent cells, as well as the agent’s current cell.)

5.2.2 Floor fields

The floor field model represents information available locally by distributing it throughout the

space. This can take the form of continuous information (similar to a temperature measurement

at each cell) or discrete information (similar to elementary particles like bosons distributed

on cells). By analogy to physics, we can speak of a field: a set with one integer or real value

per cell (as cells are indivisible). By consulting the field values in the neighbourhood, agents

extract localised information about their surroundings. The name floor field model derives from

these fields, which serve as spatial data structures. Aside from the presence of wall cells or

other agents in the neighbourhood, agents do not have recourse to any information that is not

encoded in these structures.
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Taking temperature as a trivial example of the use of fields, a room may have a gradient of

temperatures, detectable as we move through a space. We can find a heat source in the room

without knowing its precise position by choosing steps through the space in the direction of

increasing heat. This corresponds to an agent considering local values of a floor field, moving in

the direction of increasing value.

Static field. The first of the two fields provided by the model is the static field, which represents

the agents’ mental map of the environment (see figure 5). The static field — in an in/egress

scenario — is a continuous field that encodes the distance from a cell to the nearest entrance/exit.

By using the information in the static field, agents can determine whether a step in a certain

direction will bring them toward an exit. During egress, the static field can be considered a

measure of desirability; cells closer to an exit are more desirable. In this sense, the local value

of the static field can be thought of as the value of a heuristic function.

Figure 5: Floor field model space with static field, S. Agent (pictured) can move to neighbouring cells
(arrows) or current cell (arrow not shown). Cell selection is probabilistic based on agent’s perceived
desirability of cell (arrow size). Movement to exit cell (starred) results in subsequent disappearance
of agent. Static field (gradient overlay) represents inherent cell desirability; field strength on own and
neighbouring cells is accessible to the agent.
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As expected from the name, the static field is fixed from the start of the simulation run, and

does not change during the run. As is common with heuristic function definitions, the field’s

concept (distance from exit) can be quantified according to one of several metrics, with different

simulation dynamics resulting (Nishinari et al., 2004; Kretz, Boenisch, & Vortisch, in press). The

present incarnation of the floor field model uses a simple linear distance measure for the static

field (Kirchner & Schadschneider, 2002), which we define as follows:

s(i, j) = min
(dx ,dy )∈X

Æ

(dx − i)2+ (dy − j)2 (2)

smax =max
∀(i, j)

s(i, j) (3)

Si j = smax − s(i, j) (4)

Here s(i, j) gives the distance from a cell with co-ordinates (i, j) to the closest exit in X , the

set of co-ordinates of all exits. The normalisation number, smax , is the greatest distance to an

exit from any cell. The final static field value, Si j decreases from smax at exit cells to 0 on the

furthest cell from an exit.

Dynamic field. The second of the two fields provided by the floor field model is the dynamic

field. It provides a mechanism for agents to become aware of the movement of others by analogy

with ant pheromone chemotaxis (c.f. Bonabeau et al., 1991). It is a discrete field, whose integer

value on each cell is the number of bosons located on that cell (initially zero). When an agent

moves from a cell (i, j) to an adjacent cell it drops a boson on the origin cell; this is represented

in the dynamic field by Di j → Di j + 1. Thus, the boson acts as a sort of breadcrumb trail that

can be followed by other agents (see figure 6).

The dynamic field is so-named because bosons have dynamics by which they diffuse to

neighbouring cells and decay. During each time step, each boson in the model decays (vanishes)

with probability δ. Those particles that do not decay may diffuse (move to a randomly selected

adjacent cell) with probability α. Both of these probabilities are parameters to the model. Agents

can consult the values of the dynamic field in neighbour cells in order to follow virtual ‘paths’

left by previous agents. Due to the effect of δ, paths must be constantly refreshed in order to be
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Figure 6: Floor field model space with dynamic field, D. Previous agents (e.g. top agent moving up from
centre) have dropped dynamic bosons (circles). Bosons probabilistically decay (middle group) or diffuse
to neighbouring cells (lower group). An agent attending only to the dynamic field uses boson density like
a trail (lower agent following gradient overlay) to follow preceding agents.

effective at guiding pedestrians, while α has the effect of spreading information about a popular

route to surrounding cells.

While ant pheromone chemotaxis is a measurable phenomenon, the floor field model does

not suppose that humans are guided by chemical secretions in crowds. Rather, the dynamic field

is an analogy adopted in order to make the simulation more efficient by avoiding long-range

interactions between agents (Burstedde et al., 2001). By using the diffusion and decay of the

dynamic field, long-range interactions between the agents can be efficiently reduced to local

ones. Just as the decay and diffusion of ant pheromone odours allow for ant trails become

optimised and furthermore to change dynamically as required, the dynamic field allows agents

to co-operate in path finding in the model.
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5.2.3 Cell selection

To guide agents through the model, a score is assigned to each cell indicating its desirability:

ci j = exp(kDDi j)exp(kSSi j) (1− ni j)ξi j (5)

Here, ni j is 1 for occupied cells (otherwise 0) and ξi j is 0 for walls (otherwise 1); this ensures

that walls and occupied cells will not be selected by agents for movement.

Two sensitivity parameters, kS and kD are provided as parameters to the model, as it is

desirable to regulate the information available to the agent from each of the floor fields. (It

may be that the agents do not have perfect information concerning the movement of others, for

example due to darkness.) The kS and kD parameters scale the influence of Si j and Di j (the static

and dynamic field values, respectively); a sensitivity parameter can increase a field’s influence

(k > 1) or decrease it (0¶ k < 1). To take an egress example, if kS is low, then the agent moves

through the grid ignorant of where the exits are. If kS is high, then the agent is attuned to the

location of exits. If kD is low, then the agent is not concerned/aware of the movements of others.

If kD is high the agent will be disposed to follow other agents through the grid.

Agents engaged in selection of a target cell for movement convert the scores on neighbouring

cells to probabilities, according to the following equation:

pi j =
ci j

∑

(i′, j′)∈N

ci′ j′
(6)

Here, N is the set of co-ordinates of neighbour cells. Each agent probabilistically selects a

cell in this manner in every time step. All agents select cells at the same time and before any

agent attempts movement. Subsequent movement conflicts are resolved according to the details

provided above.

5.3 Sensitivity parameter effects

A moment of reflection is in order upon the effects that kS and kD have on the set of probabilities

pi j in a neighbourhood. These probabilities always sum to 1, and the normalisation process
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of equation 6 creates the probabilities with the available information provided by equation 5.

This normalisation, and hence agent preference, is guided by trade-offs between kS and kD in

ways that may be initially non-evident. Consider an isolated agent in the centre of a room. If

the agent is prevented from accessing the static field (kS = 0) then the value of pi j will be solely

influenced by the dynamic field. If, however, the static field’s influence is increased to have equal

importance (kS = kD) then normalisation must decrease the importance of the dynamic field to

balance the effects of the fields. The point here is that the normalisation of scores to probabilities

means that lowering one sensitivity parameter has the effect of increasing the influence of the

other.

It is not the case, however, that probabilities in the system are due only to the ratio kS : kD.

The exponentiation of the k-adjusted field values allows variation of the sensitivity parameters

to emphasise or de-emphasise small differences in field values between neighbours. If kS = kD

but both are high, for example, then small differences in either field between neighbours become

large differences in the cell score and larger probability spreads are obtained. At the other

extreme, if kS = kD = 0 then differences between fields do not matter at all as ci j = 1 for all

empty non-wall cells and the probability of moving to any of the five neighbours will be 20%.

We shall return to these points in chapter 7.

5.4 Model evolution

The floor field model simulation begins with the creation of the static field according to equa-

tions 2–4, and the distribution of agents through the space. Thereafter, the model proceeds in a

loop repeating the instructions for the basic time step, given in procedure STEP in algorithm 1.

In this algorithm, the agent methods SET-DESIRED-CELL, GET-DESIRED-CELL and GET-CURRENT-CELL

are simple accessors whose implementation is not shown. The trivial procedures DECAY (cause a

dynamic boson to evaporate), DIFFUSE (cause a dynamic boson to move to a random adjacent

cell), SHUFFLE (randomly re-order a list), MOVE (cause an agent to change position on the grid),

GET-NEIGHBOURS (return a list of adjacent cells) and RANDOM (return a random number in the

range [0,1]) are considered primitive and their implementations are not shown. Although no
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use is made in algorithm 1 of the return value from ATTEMPT-MOVE, future algorithms will make

use of it so it is shown here for consistency.

5.5 Summary

We have presented the details of the floor field model (Burstedde et al., 2001, as modified in

Kirchner & Schadschneider, 2002). The model has been restated as a multi-agent system in

order to accommodate state (i.e. memory, experience) the modeller may choose to define; any

such state will be carried along with the agent in its movements through the model.

We shall rely heavily on the contents of this chapter in explaining the implementation and

results of our demonstrations. Algorithm 1 will be elaborated in each demonstration to show

how we integrate the human behaviour simulations tightly with the basic model as described in

this chapter.

We turn now to the first demonstration of the methodology, in which we model a simple

agent behaviour (voluntary pushing) as well as a simulation of force and crowd safety, in the

floor field model.
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STEP(D, S, agents)

1 DECAY-AND-DIFFUSE(D)
2 for each a in agents
3 do a.CELL-SELECT(D, S)
4 for each a in SHUFFLE(agents) Â SHUFFLE simulates parallel update
5 do a.ATTEMPT-MOVE()

DECAY-AND-DIFFUSE(D)

1 for each bosoni j in D
2 do if RANDOM()< δ
3 then DECAY(bosoni j)
4 elseif RANDOM()< α
5 then DIFFUSE(bosoni j)

AGENT METHOD CELL-SELECT(D, S)

1 s← SELF

2 N ← s.GET-NEIGHBOURS()
3 r ← RANDOM()
4 w← 0
5 for each (i, j) in N
6 do w← w+ pi j
7 if w < r
8 then s.SET-DESIRED-CELL(i, j)
9 return

AGENT METHOD ATTEMPT-MOVE()

1 s← SELF

2 (i0, j0)← s.GET-CURRENT-CELL()
3 (i1, j1)← s.GET-DESIRED-CELL()
4 if IS-EMPTY(i1, j1)
5 then DROP-BOSON(i0, j0)
6 s.MOVE(i1, j1)
7 return TRUE

8 else return FALSE

Algorithm 1: Floor field model time step function



Chapter 6

Voluntary pushing, force and crowd safety

We now turn to the demonstrations of the methodology in use. The present chapter and the

two following chapters implement three broad crowd behaviours. By using the methodology

to study these crowd behaviours we hope to accomplish three things: first, to show that the

methodology is practical; second, to show that using the methodology we can build models that

take account of Sime’s concerns; and third, to show that models built with the methodology

have value and can generate interesting discussion and conclusions. Each chapter will highlight

an application of the methodology to a different type of situation, building upon the previous

chapters, and using the floor field model as an implementation formalism. This chapter focuses

on a known crowd behaviour, where our goal is to add a simple individual behaviour to agents

and investigate and characterise the emergent crowd-level effects that ensue. Later chapters

will consider changes intended to directly affect the crowd level itself, and to study a more

prospective hypothesis.

The first demonstration concerns a simulation of the application of physical force in crowds.

The demonstration of force in this chapter differs from the remaining chapters in that there is

more to integrate with the floor field model than just human behaviour. The floor field model is

lacking a simulation of force — crucial to consideration of crowd safety, and also to its ability to

represent the pushing behaviours that we want to add. Although the Microscopic Human Factors

methodology was conceived as a method for adding human behaviour to microscopic models, it

is equally well suited to microscopic implementation of individual-based physical factors such

78
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as force. Accordingly, in this chapter we integrate both human sources of force and the force

simulation itself into the floor field model using the Microscopic Human Factors methodology.

As discussed in chapters 1 and 2, force plays a major role in crowd disasters. It is the

hypothesis of this chapter that physical force is characteristic of crowds, and cannot be abstracted

out of the modelling of dense crowds without a dramatic alteration in crowd dynamics. In the

case of a crowd exiting through a doorway, we expect that significant changes to numbers of

agents exiting, exit time and exit dynamics would be observed. In addition, without a concept

of force, a model cannot predict the injuries that directly affect the injured, and indirectly affect

other individuals trying to exit around them.

If forces are characteristic of crowds and crowd disasters, we might ask what level of commit-

ment a model ought to have with respect to forces. We see three possible positions for treatment

of force in a model:

1. The first position (taken implicitly by the floor field model) hypothesises that force is not

an essential characteristic of a crowd model; the corollary to this position is that results

can be accurate with or without force so there is little lost by abstracting it out of a model.

2. The second position is that force can be accounted for without an explicit simulation

(perhaps as a linear scaling factor upon the output of a non-force model).

3. The third position, which we here espouse, is that, being characteristic of crowds, force

has a complex effect on individual actions; force cannot be removed from a crowd model

without totally changing the dynamics of the system.

Our plan is to implement force within the floor field model, retaining its individual focus,

particle field metaphor and the spirit of its movement rules. Through an experimental study of

its effects, we shall determine which of these positions is supported by the evidence. We shall

return to this question at the end of the chapter.

The three level methodology requires three distinct descriptions of physical force application:

specification, reduction and implementation. Each of these will be treated in sequence before we

turn to results and discussion.
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6.1 Specification: Forces in crowds

In section 2.1.2 we gave an abridged citation of Fruin’s characterisation of forces in crowds. A

more complete excerpt will help to explain our conception of crowd forces:

It is difficult to describe the psychological and physiological pressures within crowds
at maximum density. When crowd density equals the plan area of the human
body, individual control is lost, as one becomes an involuntary part of the mass. At
occupancies of about 7 persons per square meter the crowd becomes almost a fluid
mass. Shock waves can be propagated through the mass sufficient to lift people
off of their feet and propel them distances of 3 m (10 ft) or more. People may be
literally lifted out of their shoes, and have clothing torn off. Crowd forces can reach
levels that are almost impossible to resist or control. Virtually all crowd deaths are
due to compressive asphyxia and not the “trampling” reported by the news media.
Evidence of bent steel railings after several fatal crowd incidents show that forces of
more than 4500 N (1000 lbs.) occurred. Forces are due to pushing, and the domino
effect of people leaning against each other (1993).

Several points of interest can be gleaned from this description of extreme crowd forces. First,

Fruin implies that people have individual control only under certain circumstances, namely that

of low density and low force application. Second, Fruin highlights the involuntary nature of

movements in dense forceful crowds; this recalls Johnson’s description (see p. 22) of the inability

of those near the pile of people at Riverside Coliseum to avoid standing or falling upon others.

Third, force propagates throughout a crowd (like a shock wave). Fourth, crowd deaths are

due to force. Fifth, forces originate through individuals pushing, and are compounded through

leaning forces (we call the former source voluntary pushing and the second involuntary pushing).

If damaging crowd forces originate with voluntary pushing, we may well ask why do people

in crowds push in the first place? We are not aware of a formal study of this basic question,

but the individual focus of the methodology requires that we take a position on the topic if

we wish to model it as an individual behaviour. Although Johnson reported on young concert-

goers experimenting with shock wave creation, we suspect this is not the primary motivator

for voluntary application of force in crowds. The Bethnal Green disaster (see section 2.2.1) is

perhaps a more clear example where force was applied where people were frustrated in the slow

pace of movement to a safe area. This resonates also with crazes in which people are competing

for a limited resource, and pushing could occur due to frustration in achieving goals. Because
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of the uncertainty concerning reasons for force application in crowds, in our analysis we focus

more on the effects of force once present, rather than making claims about force origination; we

take the position that frustration of movement goals results in force application.

Fruin’s citation certainly highlights the important role that force plays in crowd disasters. It

is not only the obvious lack of injuries that results from the absence of force in a model. The loss

of individual control means that as people move within a crowd, force effects can cause them to

be diverted from their individually planned movement pattern. We suspect that this diversion

causes a change in exit time that cannot be accounted for in the absence of force. In addition,

injuries, a direct consequence of force, themselves have effects on non-injured people still trying

to exit; will such effects be obstructive or facilitative? In either case, injuries may affect exit

times in a way that would not be possible for a force-free model to explain. By exploring the

specification we have presented, we hope to shed light upon these questions.

6.2 Reduction: Local rules for force behaviours

The purpose of a model is to reduce the complexity in a real-world system down to its essential

aspects. The role of the reduction is to identify the rules that we feel are essential from the

specification. Accordingly, in order to incorporate force and pushing behaviours into our crowd

model, we determine those essential aspects of force that must be represented. The language

of the reduction level avoids formalism-specific terminology or modelling simplifications, and

adopts the local focus that is the perspective of individuals within the crowd. As discussed at

the start of this chapter, we take a similar approach to developing the physical force simulation

itself. We have adopted four essential principles concerning the modelling of voluntary pushing

and force in crowds:

1. Force is generated purposefully. Force is not simply an emergent property of masses of

people. People exert force in some circumstances and not in others. In the specification

we proposed that frustration initiates force; at the level of the reduction we look for an

abstract mechanism to stand in for the concept of frustration in triggering the application
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of force. We adopt the rule that agents push when a desired movement is blocked by the

presence of another agent.

2. Force is directed. It is applied by one person to another in a particular direction.

3. Force is propagated. Fruin tells us that forces in crowds are due to a “domino effect”

of pushing and leaning. This means that force in a crowd model must be transmitted

through the crowd in the direction of the force, and that it is additive (vector-wise)

when encountering other forces. Moreover, Fruin’s reports of shock waves imply that

propagation occurs over a certain time period. Force applied at the rear of a crowd is not

immediately felt at the front; instead it travels from person to person, and is experienced

by intermediate people as it is transmitted.

4. Force carries consequences. Although force can have an effect by guiding cognitive decision

making (see chapter 8 for more on this point), in this chapter we are concerned with

its physical consequences. Once exerted, force has measurable effects that are outside a

person’s control. Fruin suggests that people can be overcome by excessive force, but also

that force can result in a loss of individual control. Thus, from an individual perspective,

a person who is being pushed is caused to move and/or lean in the direction of the force,

not in any other direction they may have desired.

People who experience excessive force become injured and no longer move within the

model. Although it seems obvious that a range of injuries can be produced in real crowds

(including death by compressive asphyxia at the extreme), for our abstract purposes we

define injured agents to be immobilised people who simply take up space. We shall return

to this point in section 6.9.

6.3 Implementation

We have implemented the rules described by the reduction at the heart of the floor field model

(Burstedde et al., 2001). We have sought, wherever possible, to be faithful to the design pat-

terns inherent in the floor field model, in order to allow comparisons with the basic model. As



83

described in chapter 5, we have adopted the version of the model from (Kirchner & Schadschnei-

der, 2002) for the purposes of comparison with the data described in that paper. Our changes

can be divided into three categories: addition of a dynamic force field, cell selection changes

and addition of injuries. These changes will be fully described first in textual form, but are

summarised in pseudo-code in algorithm 2 on page 87.

6.3.1 Force Field Addition

The underlying change that supports simulation of individual pushing in the floor field model

is the addition of a dynamic force field. In keeping with the floor field model’s physical per-

spective (agent interaction with elementary particles through static and dynamic fields) forces

are represented in the model through force bosons. Force bosons are unit vectors, analogous to

directional elementary particles. The force field has a discrete value on each cell, namely the

aggregation (vector sum) of the force bosons on that cell. Thus the force field represents the

direction and magnitude of the force experienced by an agent on a cell. The force on a cell is

not perceptible by agents on neighbouring cells.

Force is generated (force bosons deposited) within the model by agent pushing. Agents push

when they desire to move to a cell but cannot do so because it is occupied. Agents within the

model have a variable capacity for pushing (ρ, the number of bosons dropped per push) that is

selected at the start of the model from a normal distribution whose mean and standard deviation

are input parameters to the model.

Each time step, the force bosons on a cell are propagated to neighbouring cells according

to Fruin’s observation (discussed above) that crowd forces are repeatedly re-transmitted from

person to person through interpersonal contacts within crowds. The consequence of this re-

transmission at the agent level is that the individual force bosons are not necessarily preserved.

(In a crowd an individual pushed with equal force from the left and right takes up both forces;

the rightward force is not retransmitted through the individual to the other side.) Agent-level

retransmission means that it is the aggregated force field vector (~fi j of equation 7, in which

Bi j is the set of force bosons on cell i, j) that is propagated, rather than the individual bosons
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themselves. Force is dissipated (i.e. its underlying bosons disappear) if it would move onto

an empty cell (one in which ni j = 1 in equation 5) or a wall cell (one in which ξi j = 0 in

equation 5), or a cell with an injured agent (see below).

~fi j =
∑

~b∈Bi j

~b (7)

The propagation of ~fi j occurs by depositing |~fi j| force bosons onto the cell in the direction

f̂i j. Because the coordinate system is discrete while ~fi j is continuous, both the magnitude and

direction of ~fi j must be quantised. Accordingly, floor(|~fi j|) is used for the magnitude, while a

probabilistic method is used to quantise f̂i j to one of the four neighbouring cells. When f̂i j points

between two cells, the model — in considering each force boson to be deposited — assigns the

boson to one of the two cells probabilistically. The probability of being deposited on one of the

cells is inversely proportional to the deviation of f̂i j from that cell and is given by equation 8,

in which pa is the probability of selecting the neighbour with the lower angle and pb is the

probability of selecting the neighbour with the higher angle.

1− pa =
f̂i j mod 90

90
= pb (8)

6.3.2 Changes to agent behaviour

Impact of force. While the force simulation calculates the force on a cell using a vector sum,

the agent’s experience of force is calculated using a scalar sum for the purposes of cell selection

and injuries (see below). This means that two equal and opposing forces that cancel each other

out on a particular cell will still have an impact on an agent on that cell who becomes squeezed

between those forces. Where required we shall use the symbol ḟi j rather than ~fi j to denote this

scalar sum of forces.

Cell Selection. The floor field model’s cell selection mechanism has been changed in two ways.

Most importantly, the model is changed so that normal cell selection is bypassed if the force

experienced by an agent exceeds a threshold, χ (we have used 3ρ, three times the force the

agent can produce when pushing others). If this level of force is experienced, the agent is
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deemed to have selected the cell in the direction of the force. Quantisation using equation 8 is

performed as required. With two exceptions, other model rules and behaviour have not been

changed. In particular, the agent is not permitted to share a cell with another agent or a wall,

movement is still simultaneous, the agent will push if the move cannot be made (the latter

represents the involuntary, or leaning forces within the model). The two exceptions are required

in order to make the force rules effective:

First, propagation depends on a crowd in which agents vie for empty space and in which

movement in and out of cells can be simultaneous. This is because force is not propagated

through empty space. In the floor field model, however, equation 5 requires that cells artificially

lie empty for at least one iteration after being occupied. This occurs because the term (1− ni j)

of equation 5 drops the probability of selecting an occupied cell to 0, preventing agents from

selecting an occupied cell to move into it as the previous agent leaves it. This artificially spaces

the crowd out, preventing effective force propagation. We are unaware of any particular basis

for this property of the floor field model, and so we propose a refinement to the behaviour.

Although we could have simply removed the (1− ni j) term, we feel it is reasonable that agents

will look favourably upon empty cells when others are occupied (the choice of an occupied cell in

effect being a bet that the occupying agent will move on). Accordingly we replace the occupancy

number ni j of equation 5 with our vacancy factor ηi j which is 0 if cell (i, j) is unoccupied and

0.5 otherwise. This term halves the cell score for occupied cells relative to unoccupied ones.1

The revised cell selection formula appears as equation 9.

ci j = exp(kDDi j)exp(kSSi j) (1−ηi j)ξi j (9)

Second, the introduction of the ηi j parameter to remediate the problem just described is

incomplete without a switch to the use of the more familiar (for multi-agent modelling) 4-cell

1Note that it is the cell score that is halved, as opposed to the probability of selecting that cell (which is derived
from the cell scores by normalisation). The consequent effect on probability for an occupied cell is dependent on
the distribution of cell scores in the neighbourhood. Consider the example of an agent surrounded on three sides
by walls, and on the fourth by an occupied floor cell: The wall cells each have a cell score of 0 (due to the ξ term);
halving the cell score of the only remaining choice does not affect the agent’s 100% chance of selecting it. With highly
asymmetric cell scores (e.g. due to high k values or large field differences) the effect of halving a cell score may have
only a limited effect on the probability distribution, a point we shall return to in section 6.5. This is justified, as high
desirability of a cell implies high agent willingness to wait to occupy it.
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Cartesian neighbourhood. This is because the ηi j parameter interacts poorly with the 5-cell floor

field model neighbourhood (that includes an agent’s current cell as a target for movement): The

option to select a self-occupied cell, which is always an acceptable ‘move’ for the agent (implying

ηi j = 0 for the current cell) results in large pi j for the self-occupied cell relative to occupied

neighbour cells, and consequently a low probability of selecting the occupied neighbours. The

purpose of introducing ηi j is therefore frustrated, with agents continuing to eschew moves to

occupied neighbours. The authors of the floor field model do not provide a basis for adopting

the 5-cell neighbourhood and we have not found a compelling argument in its favour. For these

reasons, we adopt the more common 4-cell Cartesian neighbourhood, only considering the four

adjacent cells and not the agent’s current cell. This allows the ηi j term to carry out its function

of allowing agents to bet on occupied cells.

The effect of these two changes to the basic floor field model will be considered in isolation

in section 6.4.2.

Injuries. An agent becomes injured upon experiencing a force greater than a threshold, φ,

which is an input parameter to the model. Injured agents become totally inactive, no longer mov-

ing through the model, and are treated like wall cells by other agents and the force propagation

algorithm.

6.3.3 Time step Progression

In addition to the steps required by the original floor field model, the revised model must

propagate force, determine injuries and bypass cell selection. Algorithm 2 shows the revised

STEP procedure. In this algorithm all other previously defined procedures remain unchanged.

Several procedures are considered primitive and their implementation is not shown: The

NOTE-INJURY procedure removes the current agent from the set of agents and notes the injury at

the agent’s current location. The PUSH procedure drops force bosons on the agent’s desired cell.2

2Actually, the force is dropped on the agent’s current cell, allowing the normal force propagation routine to
propagate the force to the desired agent’s cell at line 8 of procedure STEP. This has the net effect of the action
described.
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STEP(D, S, F, agents)

1 DECAY-AND-DIFFUSE(D)
2 for each a in agents
3 do a.CHECK-INJURY(F)
4 a.CELL-SELECT-WITH-FORCE(D, S, F)
5 for each a in SHUFFLE(agents)
6 do if a.ATTEMPT-MOVE() = FALSE

7 then a.PUSH

8 PROPAGATE(F)

AGENT METHOD CHECK-INJURY(F)

1 s← SELF

2 (i, j)← s.GET-CURRENT-CELL

3 if ḟi j > φ

4 then NOTE-INJURY(s)

AGENT METHOD CELL-SELECT-WITH-FORCE(D, S, F)

1 s← SELF

2 (i, j)← s.GET-CURRENT-CELL

3 if ḟi j > χ

4 then (i, j)← CELL-IN-DIRECTION( f̂i j , i, j)
5 s.SET-DESIRED-CELL(i, j)
6 else s.CELL-SELECT(D, S)

PROPAGATE(F)

1 for each (i, j) in F having a force boson
2 do if IS-EMPTY(i, j) or IS-INJURY-AT(i, j)
3 thenÂ force is not propagated
4 else PROPAGATE-FORCE(~fi j , F ′)
5 F ← F ′

PROPAGATE-FORCE(~fi j , F ′)

1 for i← 1 to floor(|~fi j|)
2 do (i′, j′)← CELL-IN-DIRECTION( f̂i j , i, j)
3 if not IS-EMPTY(i′, j′)
4 then DROP-FORCE-BOSON(F ′, i′, j′, i, j)

Algorithm 2: Step function augmented by pushing and force additions



88

The CELL-IN-DIRECTION function accepts f̂i j and a starting cell’s co-ordinates, returning the co-

ordinates of the adjacent neighbour cell in that direction. The IS-INJURY-AT function determines

whether a cell is occupied by an injured agent. The DROP-FORCE-BOSON function drops a single

force boson on cell (i′, j′) oriented from cell (i, j). For simplicity of presentation, we assume

that if a subscripted value is passed as a parameter to a procedure, the subscripts are available

to that procedure as well.

6.4 Results: Adapting the model for force

In sections 6.4–6.7 we compare the effect of our changes to Kirchner and Schadschneider’s

analysis of the basic floor field model. (We shall refer to Kirchner and Schadschneider’s analysis

as the FFM analysis and to the analysis of our changes as the force analysis.) The purpose of

this investigation is to investigate the effects produced as we add force to the simulation, and

to demonstrate the results than can be expected from a model built using our methodology.

Accordingly we have been guided by the FFM analysis and present results in comparative form.

In this section we present the parameters used throughout the force analysis. We then

discuss our replication of the original FFM analysis, as well as considering the effects of the non-

force-related changes we have described. Following sections turn to the effects of introducing

force and injuries into the model.

The discussion of the force-enabled model is divided into three parts due to a need to change

the measure used by the FFM analysis. As simulations in the FFM analysis were run until all

agents have successfully exited the modelled space, the measure in the FFM analysis is the

number of iterations required for this complete exit. Waiting for a complete exit is ill-suited to a

model with injuries because an agent can become injured in front of the door in such a way as

to prevent other agents from exiting; if agents are prevented from exiting then the number of

iterations required for a complete exit is undefined. We have changed to a measure that counts

the number of successful exits in a fixed number of iterations.

We bridge between the FFM analysis measure (we call it the complete exit measure) and our

measure (the fixed time measure) as follows: In section 6.5 we run our model using the complete
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exit measure with injuries disabled for validation and comparative purposes; this ensures that a

complete exit is possible and allows discussion of the basic effects of force. In section 6.6 we

show the same scenario (injuries disabled) using the fixed time measure to provide a reference

between measures. Finally, in section 6.7 we enable injuries in our model and use our fixed time

measure to test the importance of incorporating injuries directly within the model.

6.4.1 Model Parameters

We have adopted the fixed parameter values that FFM used wherever possible. Except as noted

in the text, parameters were set as summarised in table 2. The model was implemented using

the Repast 3.0 framework for Java (North, Collier, & Vos, 2006). Model execution (in this and

subsequent demonstrations) was on an Apple Mac Pro (two 2.66 GHz dual-core Intel Xeon

‘Woodcrest’ processors, 2 GB system memory) running Mac OS X version 10.4.11, and equipped

with the system-standard Java revision 1.5.0_13.

Unless otherwise indicated, fifty replications were run for each parameter combination;

graphical results show the mean of these replications for the dependent variable in question.

Table 2: Parameter table with default settings

Parameter Value Description

Grid size 63× 63 Outer boundary of modelled space (includes wall cells)

Agent Pop. 1116 Starting agent density (30% of available cells)

α 0.3 Probability of dynamic boson diffusion

δ 0.3 Probability of dynamic boson decay

ρ̄,σρ 5, 1 Normal distribution parameters of agent pushing forces

χ 3ρ Threshold of forced cell selection

φ see below Injury threshold

6.4.2 Neighbourhood size

Our main interest is in evaluating the effects of introducing force into a microscopic crowd

model. As discussed above, however, two changes were made to the basic model to facilitate
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the addition of force: introduction of the η term into equation 9 and a switch to a four-cell

neighbourhood.

We ran our implementation of the basic floor field model with and without these changes.

The purpose was twofold: first, to ensure we replicated the basic floor field model from the

FFM analysis, and second to determine whether the overall pattern of results was altered

by our changes to equation 9 and the neighbourhood size. Results are shown in figure 7.

On the first question, when running with the five-cell neighbourhood we found the model

replicated the results of the FFM analysis by visual comparison with the FFM analysis (Kirchner

& Schadschneider, 2002, figure 5b). On the second question, changes to the cell selection

function and neighbourhood rules did not change functional forms of the results from the two
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Figure 7: Non-force changes to the floor field model. Time steps to complete exit. Lines identified by
× are our replication of the FFM analysis results (Kirchner & Schadschneider, 2002, figure 5b). Lines
identified by + are our changed model (four-cell neighbourhood and η term).



91

models. The four-cell model did decrease the absolute time to complete exit, especially at lower

values of kS , but did not alter the overall relationships between kS and kD.

As the FFM analysis is not of a calibrated model, translations in the curves are acceptable

for this baseline condition; we therefore conclude that our minor changes to the base model’s

rules are acceptable variations. We are less concerned with these practical changes and more

interested in studying force effects. Accordingly, hereafter when we present results under the

label of the FFM analysis we mean the floor field model running with our four-cell neighbourhood

and the η term. In other words, the difference between the FFM analysis and our force analysis,

below, is the difference between non-force and force-enabled models with otherwise identical

neighbourhood and cell-selection rules.

6.5 Results: Effects of force

The simplest possible comparison with the floor field model is to compare it with the results of

our model with injuries disabled. The most important results of the FFM analysis show the time

for all agents to exit under the influence of varying kS (Kirchner & Schadschneider, 2002, figure

5a) and varying kD (ibid., figure 5b). In this comparison we have set φ arbitrarily high, so that

agents will not become injured but will otherwise experience the modelled force effects. We

have chosen to present results for fixed kS and varying kD because these are the most revealing

results. We have used the same values for kS and range of kD as in the FFM analysis. Results are

shown in our figure 8.

The FFM analysis suggested that faster exit times are obtained when values of kS increase,

and that fixing any kS value while increasing kD results in a slightly longer time to exit. When

kS is low the force analysis suggests a similar pattern of exits. When kS is high, however, the

addition of force produces a dramatically different pattern of results. The number of iterations

required to exit increases to between 402–1456% of the FFM analysis when kD ¶ 5 and kS = 10.

Where the FFM analysis indicated a clear benefit to high values of kS , the force analysis suggests

high costs for this parameter setting.
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Figure 8: Time steps to complete exit with and without force. Lines identified by × are the floor field
model results. Lines identified by + are with force enabled.
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6.5.1 The effect of kS on agent drive

To understand this discrepancy we must first understand agent drive, and the role of kS in

modulating it. The kS parameter controls the agent’s consideration of the static field (distance

to the exit). A crowd-level effect that emerges from high kS values in this scenario is that the

area around the door becomes highly congested. The entire population of agents moves directly

toward the door, leaving few to no empty spaces within the crowd. We describe the result of this

movement independently of the size of the crowd in numbers or space by calling it a high-density

crowd (figure 9a). Conversely, a low-density crowd has the quality of being spaced out with

empty cells between individuals (figure 9b).

a. High density crowd, suggestive of high kS values b. Low density crowd, suggestive of low kS values

Figure 9: Crowd density schematic

Why does kS produce this strong movement toward exits and high-density crowds? Table 3

demonstrates that when kS = 10, it is virtually certain that an agent step will be in the direction

of the closest exit. By contrast, when kS = 0.4, the agent is more likely to step in a different

direction than to step directly toward the door (pdoor = 0.3595 vs. pother = 0.6405). When

kS = 0.4 agents take much longer to reach the exit than when kS = 10.
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Table 3: Probability of selecting a neighbour cell while centred on the door, halfway back in the room.
No neighbour cells occupied, no dynamic bosons in the neighbourhood.

kS

direction 0.4 1.0 10.0

forward 0.3595 0.5378 0.9999

left 0.2394 0.1946 3.863× 10−5

right 0.2394 0.1946 3.863× 10−5

backward 0.1615 0.0727 2.060× 10−9

Accordingly, we describe the strength of the kS parameter as representing the agent’s drive to

exit. This is a key concept that we shall be returning to throughout the analyses of this chapter

and those that follow. It is worth noting here that in the present scenario high drive and high

density tend to occur together. However, the same is not necessarily true of all scenarios, as we

shall see in future chapters. High drive is a consequence of the cell selection equations, while

high density is a crowd-level effect that emerges from drive and the scenario.

Returning to the analysis of figure 8, we note that crowd density, generated by high drive,

directly affects the effectiveness of force transmission. The differences between the models are

minimal when the influence of the static field is low; when kS (and consequently agent drive) is

low there is little pressure for agents to move toward the door and agents tend to be dispersed,

yielding a low density crowd. This low crowd density means lots of space around agents and

therefore agents are infrequently frustrated in their desired movements by the presence of other

agents; since agents must be blocked by other agents in order for force to be exerted, these low

crowd densities translate into less force applied and therefore similar dynamics to the basic floor

field model. In addition, the presence of empty cells means that when force is generated it is not

easily transmitted throughout the crowd. This explains the similarity in results between the FFM

and force analyses when kS = 0.4 or kS = 1. We now turn to the unique effects that emerge in

the force analysis when kS = 10.
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6.5.2 Agent density and the aisle

Although our model (with injuries prevented) predicts similar exit times to the floor field model

when kS is low, it displays a dramatically different pattern when kS (and consequently agent

drive) is high. Times to exit increase significantly under these parameter values, particularly in

combination with low kD values. Under these conditions agents move directly toward the door

at the outset of the simulation, creating a high density crowd. As kS causes agents to prefer cells

leading to the door, and as there are few open spaces within the crowd, agents tend to select

occupied cells. With the selection of occupied cells, agents begin to push and this changes the

dynamics of the system significantly from that of the floor field model.

This effect disappears as values of kD increase because the importance of kS is mathematically

decreased (see section 5.3 for more on this point). This decreased influence of kS results in

lower agent drive, thus less co-ordinated movement toward the exit, lower density, more space

around agents, less force applied and transmitted — and ultimately fewer deviations from the

FFM analysis.

The longest exit times are obtained when kS=10 and kD < 5. Observation of the model

shows characteristic patterns as the simulation unfolds with force on but injuries prevented (see

figure 10). We shall first describe the pattern, and then discuss its mechanism. The agents pack

themselves around the door at the outset of the model. There are few empty spaces within the

crowd. The rear-most ranks of agents push toward the door. Forward of these agents, agents

experience the combined forces of the agents behind them and lose their ability to select their

own cells; this triggers additional involuntary force as their forced movements are blocked. Thus

all agents join in a push toward the front, emanating from voluntary force from rear-most agents

and compounded by involuntary force from those in front of them. Large additive forces are

brought to bear upon agents at the front. This corresponds to the conditions shown in figure 10c.

Our discussion now divides the agents into two groups: those in the area we call the aisle (a

rectangular region, centred on the door, that extends front-to-back through the crowd), and

those outside this region.
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a. t=0 b. t=15

c. t=40 d. t=83

e. t=122 f. t=2000

Figure 10: Aisle evolution. kS = 10; kD = 3.5; injuries off (a) Initial model conditions. Agents (dark grey
circles) distributed throughout space delineated by walls (white border) must exit through door (black
cell in wall). (b) time step 15: note agents from lower corners take longer to reach the door area because
diagonal movement is not possible. (c) time step 40: Crowd around door now capable of efficiently
transmitting force, and many agents (light grey circles) are now bypassing normal cell selection due to
excessive force. (d) time step 83: Note free movement of agents on centre aisle. (e) time step 122: Aisle
has exited, agents at edges of aisle and not at rear are light grey and cannot step sideways due to pressure
from behind. (f) time step 2000: This stable pattern can persist for many time steps.
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For agents on the aisle, the crowd pushes forward, and an agent at the front is forced to exit.

This opens a space in the crowd that is immediately filled by an agent stepping forward. As time

progresses, agents in the aisle are able to exit and the aisle gradually clears.

For agents not on the aisle, the rear ranks select cells on the closest path to the door (forward),

applying voluntary force to those agents in from of them. In front of the rear ranks there is no

opportunity for movement as agent cell selection is bypassed due to ḟi j > χ. The involuntary

forces from these agents are added to the voluntary forces from the rear ranks. The fully-packed

crowd pushes forward upon the front agents who are pinned against the wall, and are thus

prevented from exiting. In short, this demonstrates an emergent crowd-level effect in which

non-aisle agents are effectively jammed in position due to pushing by a relatively small number

of agents at the rear.

As the aisle clears (figure 10e), agents not in the aisle and not at the rear are physically

prevented from stepping sideways into the empty aisle; this is because they are being forced to

select the cell in front of them by the combined force of the agents standing behind them. This

leads to a situation in which only the rear-most agents in the model are free to move. At this

point, progress depends on one of the rear-most agents probabilistically moving laterally into

the aisle, an eventuality that unfolds exceedingly slowly (see next subsection for more on this

point). This process is laboriously repeated until enough agents have exited to alter the force

characteristics such that agents close enough to the door (who prefer a lateral step to a forward

step) are no longer pinned in place.

The distribution of results (increasing exit times) in figure 8 as kD is increased from 0 to 3.5,

is explained by differences in the initial packing of agents around the door. Higher values of kD

create a pack near the door that is shorter along the front wall and longer front-to-back. This

results in a longer exit time because the exit takes place by slowly peeling off the ranks from the

rear, and there are more ranks when kD is higher. The value of kD does not affect the formation

of — or behaviour of — the aisle. As kD exceeds 3, the decreasing exit times are due to the kS

parameter’s reduction in influence as kD becomes more important in cell selection (as discussed

in section 5.3).
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The results of this analysis support our claim that force effects are extremely important

to studying crowd behaviours and hence for crowd models. The introduction of a simple

force model of pushing without injuries results in dramatically different and more realistic exit

behaviour in dense crowd conditions (see chapter 8 for more on this point).

Rear rank behaviour

The rear rank agents are the only agents in the model that can move after the aisle region is

cleared. These agents overwhelmingly reject lateral or reverse movements, choosing to select

the occupied cells immediately in front of themselves. In table 3 we showed the probability of

stepping forward for an agent with no surrounding agents. Table 4 gives the probabilities for an

agent blocked only from stepping forward (as the rear-most agents are in this case).

Table 4: Probability of selecting a neighbour cell while centred on the door, halfway back in the room.
Only forward neighbour cell is occupied, no dynamic bosons in the neighbourhood.

kS

direction 0.4 1.0 10.0

forward 0.2191 0.3678 0.9998

left 0.2919 0.2663 7.726× 10−5

right 0.2919 0.2663 7.726× 10−5

backward 0.1969 0.0995 4.121× 10−9

As discussed in footnote 1 on page 85, polarisation in neighbourhood cell scores can underlie

increased probability that agents will select occupied cells. When kS = 10, this results in doubling

of the probabilities of selecting the non-forward cell, but this doubling is insignificant compared

to the overwhelming probability of moving ahead. (Compare with kS = 0.4, where moving

either left or right exceeds the forward movement probability in this case.) While table 4 assumes

only one blocking agent, for most of the rearmost agents several of the neighbour cells may be

occupied, further diluting any inhibition for forward movement. This is the explanation for the

persistence of the aisle region as shown in figure 10f, where rear-most agents are very slow to

move laterally into the aisle.
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6.5.3 The aisle and model realism

The fixed aisle pattern appears to run counter to the normal behaviour we expect from crowds;

it is hard to believe that, in reality, people at the rear would not simply step sideways into the

aisle.3 In this regard, it must be highlighted that we have disabled part of the model by setting

φ =∞. In other words, the aisle forms (a) with high agent drive, and, importantly (b) when we

prevent injuries, but infinite force with no injuries is no more realistic than rear agents who do

not make lateral steps. As we shall see, injuries play a key role in improving aisle breakdown

(because this long-lived aisle pattern is obtained when the agents have an infinite capacity to

experience force without becoming injured). Injuries, however, can block the exit, preventing a

run to completion and consequently preventing comparison between the force analysis and the

FFM analysis. Hence the change in measure to be studied in the next section, and our reasons

for setting φ =∞. We shall have more to say on the topic of the aisle in section 8.4.

One remaining question is whether kS = 10 — given its effect on movement probabilities —

is a useful parameter value for study. We must bear in mind that we are working with an abstract

model, and we do not know the range of realistic values for this parameter. It is important to

note that, although the kS = 10 parameter value produces almost deterministic behaviour, it also

generates a scenario we want to study in this chapter. Here, our goal is to evaluate the effects of

pushing — including extreme force build-up — and the forward focus of agents is generating

this interesting force build-up. We have seen cases (e.g. Bethnal Green, Riverfront Coliseum) in

which those who have freedom of action at the rear push and create shockwaves — unaware of

problems engendered at the front — just as our rear agents do. Fruin, moreover, discusses the

loss of individual control in tightly packed crowds, and describes crowd deaths in terms of the

kind of force build-up we see in this model. Replication of these conditions is a valuable aspect

of setting kS = 10, as is comparison with the FFM analysis. We also note that section 6.4.2

and figure 7 showed good agreement between the FFM analysis and our basic model (with the

3If we take this position at face value, the interdiction of diagonal movements constrains agents in this regard. This
is because a choice must be made between moving sideways and moving forward. If simultaneous forward-diagonal
movement was allowed, it would increase the probability of rear agents stepping into the aisle region (perhaps
effectively preventing the formation of the aisle in the first place). This observation will motivate a suggestion for
future work: the addition of diagonal movement choices to the model. The question, however, is academic because
the lack of injuries in the present scenario means that the appearance of the aisle is artificial in any case.
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non-force changes of section 6.3.2); thus it is the introduction of force alone that is responsible

for the aisle region. In the interests of investigating high forces, then, we conclude that kS = 10

has value for present purposes; in a study less interested in extreme force conditions, however,

a more modest value may be appropriate.

6.6 Results: Comparison of measures

As discussed above, it is necessary when analysing injuries to use a measure that does not require

all the agents to exit; this is due to the potential for the door to become blocked by an injury. We

ran the model, with and without the force simulation, using a fixed time measure. We ran the

model for 350 iterations and measured the number of agents exiting within that time. Results

are shown in figure 11. The value 350 was selected because it allows for the initial stages of

model exit to be completed, it excludes most of the aisle iterations and it precludes a complete

exit for the fastest runs (which would lead to a floor effect obscuring differences between fast

runs). Note that to bridge between the complete exit and fixed time measures, we again evaluate

the model with injuries prevented (φ =∞).

In inspecting graphs of the present results with respect to the ones just described, bear in

mind the reversal in sense of the y-axis: In the complete exit measure, a low number of time

steps is good: a fast exit; this corresponds in the fixed time measure to a high number: large

numbers of agents exiting in the fixed time.

There are broad similarities in the pattern of results between the complete exit measure and

the fixed time measure. As in figure 8, when kS = 0.4 and kS = 1.0 we see a similar pattern of

results between the FFM and force analyses. For both models, both measures and both values

of kS, increasing kD indicates less efficient egress (increased time to exit in figure 8, decreased

agents exiting in figure 11). We see an improvement in exit times, especially when kD is low,

when force is applied compared to the non force cases; this effect is more pronounced when

kS = 1, using both measures. As before, the FFM analysis predicts maximal exit rates when kS is

10, while the force analysis disagrees, showing many fewer agent exits within 350 iterations,

especially when kD is low.
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Figure 11: Number exiting in fixed time with and without force. Lines identified by × are the floor field
model results. Lines identified by + are with force enabled.
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This demonstrates two points: First, the outcome of the complete exit is visible from the

crowd’s progress in the early stages of the model’s execution; we do not need to wait for a

complete exit to compare the effects of the various parameter values. Second, the new fixed

time measure detects similar trends and effects when compared to the complete exit measure.

This will allow us to relate our exploration of modelled injuries (below) with the FFM analysis

despite the difference in measures.

There is one notable difference between the two measures, however, concerning the results

when kD < 5 and kS = 10 with force. In the fixed time measure the curve is smooth and does

not experience a drop in exiting agents centred on kS = 3.5, as was apparent in figure 8. This

is a reflection of the timing of the exits with force enabled. The fixed time measure does not

explore the slow exit phase of the non-aisle agents.

6.7 Results: Effects of injuries

With the fixed time measure in place, we can enable the injury parameters of the model in order

to assess the effects of injuries on exit behaviours of agents. In order to cause agent injuries

it is necessary to determine another threshold value in the agent’s injury response. When an

agent experiences force greater than the threshold, φ, they are deemed to be injured. The

φ parameter represents hardiness; the larger the φ parameter, the more force the agents can

experience before becoming injured. Like other aspects of the floor field model, we have yet to

determine the correspondence between model units of time, space and force and the physical

units experienced by real crowds. Rather than selecting a threshold arbitrarily, we have elected

to characterise this particular variable across a range of values. (The performance of a particular

individual is hypothesised, then, to lie at some point along this axis.)

In gathering model data, we have selected representative values for kS and kD from the FFM

analysis. We noted that Kirchner and Schadschneider selected fixed kD values of 0 and 10 (2002,

figure 5a) and kS values of 0.4, 1 and 10 (ibid., figure 5b). We matched each kD value with its

opposite extreme from the kS values. In creating a matching value for the intermediate kS = 1

we selected kD = 4, which occurs approximately halfway along the range of complete exit times
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for kS = 1 in Kirchner and Schadschneider’s figure 5a. This gives us a set of values (kS , kD):
�

(0.4,10), (1,4), (10,0)
	

. By analogy with the discussion of section 6.5.1, we refer to these as

low drive, moderate drive, and high drive cases, respectively (and we shall use these terms in

future chapters as well). For each of these parameter regimes the injury threshold was varied

between 25 and 225 bosons, exploring the injury space up to a point where the threshold was

too high for any agent to become injured. We report numbers of injuries and number of agents

exiting in a fixed time in figure 12.

Unsurprisingly, as increasing φ required more force to cause injury, injuries decreased. In

terms of numbers of injuries, as drive increases (for a fixed injury threshold) more agents become

injured.

Turning to the exit chart, when φ > 155, injuries do not occur and we see familiar values

that correspond with the points in figure 11. Introduction of injuries affected all drive levels,

but primarily the moderate and high drive cases, with exit rates affected by changes in φ. The

parameter settings that were the best for preventing injuries were different from the parameter

settings that enabled more agents to exit. The best exit rate was produced in the medium drive

case (and this accords with the results of sections 6.5 and 6.6 as well). A lower exit rate was

obtained from the low drive case. A non-monotonic relationship was found for the high drive

case: at high and low φ, the number of agents exiting was low; for 45< φ < 135, however, exit

rates were substantially higher with a peak at φ = 95.

These general trends and relationships between drive levels are robust, and have been

observed consistently by us over many replications of these data sets. Caution is urged, however,

about attempting prediction of the results of an individual run from this data; distributions

for number of exits at values of φ that produced injuries have high standard deviations (see

figure 13). These high standard deviations are obtained because of the possibility of an injured

agent (or group of injured agents) blocking the exit.
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Figure 13: Standard deviation of number exiting in figure 12.

6.7.1 Mechanism underlying injury effects

Now let us consider the mechanisms that underlie the results of figure 12. In the terms of

section 6.5.1, agent drive — and hence crowd density — has a dominating effect on both injury

production and numbers of agent exits. High drive where kS � kD produces more injuries,

while moderate drive when kS and kD are both moderate produce the best numbers of exits.

Low crowd drive brought on by kS � kD results in few injuries but also few exits.

At low drive the lower number of injuries is a simple consequence of the lack of force exerted

in this case, as described in section 6.5.1. The two other conditions are more revealing.

In the moderate drive case there are three separate phases displayed. The first phase

(φ < 75) sees a substantial drop-off in injuries accompanied by a substantial increase in the

number of agents exiting. The second phase (75< φ < 145) sees a continuing decline in injuries

until no agents are injured, but only a modest increase in number of agents exiting. The third

phase (φ > 145) involves a consistent lack of injuries and no change to the exit rate. This
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indicates that a moderate number of injuries does not necessarily have a large effect on the

number of agents exiting when drive is moderate. Larger numbers of injured agents do have an

impact on number of exits.

When kS = 10 the cell selection policy provides a strong pressure to move toward the door,

and consequently high density near the door, as described in section 6.5.1. The φ parameter

seems to have a simple relationship with the number of agents injured: we see a decline in

numbers of injuries as φ increases. This simplicity in numbers of injuries, however, belies a

complexity in the effect of injuries on the exit rate, which display a complex relationship against

φ. There are four phases: First, when φ ¶ 55, increasing force threshold results in an increase

in exits to a local maximum. Second, while 55< φ ¶ 95 a brief plateau occurs, then exits build

to a maximum. Third, when φ > 95, number of exits decline, until — fourth, there are no more

injuries and the exits level off.

Protective effect of injuries

The interpretation of this four-phased relationship at high drive is made simpler by the fact

that obstacles can actually facilitate exits in emergencies. This is because obstacles disrupt

symmetrical patterns of force and allow shelter for exiting agents from the forces behind them

(Helbing et al., 2002; Nishinari, in press). This effect is evident in our model, and is the

underlying mechanism for the increased exit rates between 45< φ < 145. This swell in agent

exits is attributable to the protective effect of the injured agents upon the others. Practically

speaking, because force is not transmitted through injured agents, those just forward of the

injured are free to make their own cell selections while others are pinned in place; this increased

flexibility means that agent exits are facilitated, and avoids the kind of stasis evident in figure 10e,

where drive and density were high but we artificially prevented injuries. Observation of the

model demonstrates this principle at work in several different ways. Let us take two examples:

At φ = 55 large numbers of injuries can create zones of free movement (see figure 14).

These large numbers of injuries, however, physically remove many agents from the simulation

(directly limiting exits) and impede movement for those behind (indirectly limiting exits).
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Figure 14: Large force block with many injuries. φ = 55, kS = 10, kD = 0, time step 120. Dark grey
agents are making their own cell selections, both at the rear, and in front of injured agents (yellow). Light
grey agents are pinned in place.

The highest number of exits, around φ = 95, are more subtle. They take advantage of

limited numbers of injuries to perturb the aisle pattern. In figure 15, an agent near the front

(agent a) is shown stepping laterally into the aisle, an event that would not occur with injuries

disabled. This step is possible because to the right of this agent there is an agent (agent b)

sheltered by injuries from other agents’ pushing and leaning forces. Agent b is therefore capable

of selecting its own cell. Although b’s force exertion is small relative to the many agents pushing

upon a from the rear, through re-propagation by the row of agents between a and b it is able to

shift the force upon agent a slightly to the left. Equation 8 then provides a small probability for

a to step into the aisle. This movement opens a space, breaking the chain of force transmission

and allowing a column of agents to break away into the aisle.

6.8 General discussion

Having explored the characteristics of the force introduced by our changes, we now turn to the

implications of this exploration for our two central issues: the predictions made by the FFM

analysis and the centrality of force to models of crowds.

Exit rate. First we consider the overall relationship between the two analyses. Table 5 sum-

marises the number of agents exiting for the values of kS and kD investigated, reporting the
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a. t = 83

b. t = 84, shown with enlarged detail of exit area

c. t = 88

Figure 15: Devolution of the aisle. kS = 10, kD = 0, φ = 105. Note exiting agent at t = 84 stepping left
into the aisle.
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Table 5: Comparison of FFM and force analyses (agents exiting). Differences in quantities identified by
the same symbol are statistically significant (p<0.0001, two-tailed welch’s t-test).

FFM analysis Force analysis

drive (kS , kD) mean mean range

low (0.4,10) 55.9 54.5 40.0–57.4

moderate (1, 4) 118.0� 92.0 36.3–106.1�

high (10, 0) 174.3Î 50.8 16.7–85.7Î

mean and range across φ for each crowd drive.4 Force has a significant impact on the number

of agents able to exit in the first 350 time steps of the simulation, unless agent drive is low

(conservatively, we compared the best exit rate in the range of the force analysis to the FFM

analysis). In the high and moderate drive cases the range of agents exiting is below the number

of agents exiting in the floor field simulation; reductions of 50–90% in exits (depending on the

threshold for injury) were obtained at high drive when the force analysis predicts injuries in

large numbers.

On the question of facilitating agent exits, table 5 demonstrates that when agent pushing

is taken into account, our model makes a very different prediction from the floor field model.

Specifically, our model suggests that conditions that reduce crowd drive to moderate levels

(namely moderate values of kS and kD) will result in many more agent exits than will high

crowd drives (as predicted by Kirchner & Schadschneider, 2002).

Crowd paradoxes. Helbing, Farkas & Vicsek have observed that crowds exhibit paradoxical

collective behaviours when speeds and commitment to courses of action increase. These be-

haviours are characterised by simple paradoxical phrases like faster is slower and freezing by

heating (see section 2.1.2 for more on these paradoxes). The force analysis demonstrates these

two paradoxes.

4Table 5 presents mean data for the force analysis in order to provide the reader with an overall sense of the
effects of injuries caused at each parameter level. From an analytic perspective, however, an average across values of
φ may not be warranted as we hypothesise that there is a single true value of φ for each individual. We prefer to
analyse the range data as this provides a best-case and worst-case prediction of the effects of injuries on the exiting
crowd.
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The faster is slower paradox (Helbing et al., 2000b) refers to the fact that crowds passing

through a bottleneck may make slower progress when individuals’ speeds are higher, due to

the enhancement of clogging at the exit and interpersonal force effects. Our model directly

demonstrates this principle as moderate speeds toward the door (brought on by moderate

parameter values) yield the best exit rates. Faster speeds (brought on by kS � kD) yield fewer

agent exits in a fixed interval because of clogging and also force effects.

The freezing by heating paradox (Helbing, Farkas, & Vicsek, 2000a) concerns particle

energies: High particle energy can result in stasis where lower energies permit free movement.

Our model directly demonstrates this principle: High particle energy (in the case of pushy, dense

crowds) demonstrates the stasis effect of figure 10e that is only broken when the energies are

dissipated through force breaks — a demonstration of freezing by heating.

Is force essential? This brings us to a matter raised at the start of the chapter in which we

suggested that there were three possible positions that a model could adopt on the question of

crowd forces.

The first position suggested that modelling force was non-essential and that results could

be accurate with or without force. Based on our investigation of the same model both with and

without a force implementation we believe that this position cannot be supported. The addition

of force to the model, with or without injuries, dramatically and significantly alters the exit

behaviours of modelled agents.

The second position suggested is that force can be treated post facto by applying some

correction factor to the data. The complex, multi-phase relationships of figure 12, and our

understanding of this relationship by reference to the protective effects of injuries at high drive,

suggest that the effects of force cannot be modelled after the fact by applying a simple “force

penalty” measure if a range of crowd conditions modelled is to include high drive crowds. No

force penalty measure can induce the non-linear changes we have reported.

Instead, our results support the third conclusion, that force is characteristic of crowds and

cannot be abstracted from a crowd model without significantly changing the behaviour of the

model.
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This conclusion demonstrates the value of studying human behaviour in a microscopic

crowd model. The abstract simulation allows for us to test general hypotheses such as this

without becoming distracted by the details of specific situations. But what of the validity of the

simulation? We now turn to a discussion of how the model relates to the world.

6.9 Model validity

As discussed in section 4.3.2, the Microscopic Human Factors methodology gives us the oppor-

tunity to evaluate the model at all three levels of abstraction. In this section we argue for the

validity of pushing behaviours in the floor field model.

Implementation. At the level of the implementation, the task is to determine whether the

model has properly implemented the microscopic human factors that were specified in the

reduction (section 6.2). The reduction specified that force is generated purposefully, directed,

propagated and carries consequences. Through our analysis of the floor field model we have

shown all of these properties at work within the model. Purposeful force generation is demon-

strated as agents push primarily when crowds are dense and agent movements are blocked.

Directedness and propagation have been demonstrated as forces are directed toward the door,

pinning agents in place as we have seen in figure 10f. Our injury investigation has demonstrated

non-linear consequences of force. As discussed above, the implementation may benefit from the

addition of diagonal movement transitions, a possibility that we leave to future work.

Reduction. The validation question at the reduction level concerns whether the microscopic

human factors proposed are a reasonable abstraction of our conception of how pushing works in

real crowds. The behaviours generated by our microscopic human factors do seem to accord with

the specification. The specification was based primarily on Fruin’s observations about force in

crowds. Our reduced rules generated the pushing and leaning forces he speaks of. Observation

of the model shows waves of force that propagate through the crowd (figure 16), particularly

when crowds reach maximum density.
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Figure 16: Waves of force. φ = 105, kS = 10, kD = 0, time step 199. Lightness of cell proportional to
number of force bosons present. Note wave pattern in intensity variations toward edges of crowd. Agents
not shown.

Consideration of the reduction also leads to potential future work. Our reduction of the

specification simplified the concept of injury in crowds to immobility and physical obstruction.

Injuries in crowds, however, have a continuum of severity from moderate discomfort to death.

Clearly our abstraction in this case has discarded this detail. For our present purposes this

allowed for a clear focus on the role of injuries as force breaks. Future work could integrate

more subtle injury models with a conception, for example, of variable speed (e.g. Kretz, 2007)

to examine the effect of lightly injured mobile agents on egress dynamics.

The results we reported in previous sections show that our reduced rules are capable of

re-creating pushing, leaning and simulation of forces in a crowd situation. In our model, people

have individual control only when drives and densities are low and forces are controlled. We have

demonstrated a crowd in which movement can be involuntary, and in which force propagates.

We have provided for simple simulated injuries. In short, our reduction meets the goals of the

specification.

Specification. Validation at the level of the specification means determining the extent to

which the model results are relevant to the real world. As discussed in section 4.3.2, the

methodology helps us to argue for sufficiency of the model results, helping our results to fit in

with the results of other disciplines to confirm the mechanisms at work in crowds.
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We have shown that introduction of voluntary pushing based on an individual’s frustration

in movement is capable of producing crowd behaviours that accord with Fruin’s description

of forces in crowds when combined with simulated leaning forces. We have shown emergent

effects reported by Fruin (e.g. shock waves) in model results. We can look to all three case

studies in chapter 2 for additional support in our contention of the importance of modelling

forces in crowds. All three case studies showed a profound effect on movement due to high

drives, high density and force: injuries causing outright blockages at Bethnal Green tube station

and Lenin stadium, and force causing injuries, loss of control and pinning of agents at walls at

Riverfront Coliseum. These sources of support suggest validity for our model, in turn supporting

the conclusions of our work relating to the importance of modelling force in crowds and the

protective effect of injuries in their role as force-breaks within the crowd.

As discussed above, however, questions concerning the exact trigger for pushing behaviours

are not answered by the model. The model, then, should therefore not be seen as a complete

model of crowd safety. Our abstract model, instead, is useful to characterise mechanisms for

emergent crowd effects due to pushing and force. We show what happens when force is deployed,

and show a mechanism that can generate the force required to conduct this analysis.

6.10 Summary

In providing the first of three demonstrations of the MHF methodology, we created a model

of pushing in crowds, force and crowd safety. We used the MHF methodology to describe the

behaviour of interest at the specification, reduction and implementation level. We then used

the implementation to examine the mechanisms for force propagation, injuries and related

effects at the crowd level. We specified what parts of the physics of force need to be translated

into a model, and showed how the addition of crowd safety alters model conditions from an

established microscopic model of crowds: the floor field model.

Conclusions from this work include the fact that a relatively small number of agents in the

rear of a crowd can dramatically affect outcomes for those closer to the front, including jamming

effects due to leaning forces throughout the crowd triggered by the rear agents. We have also
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noted that relatively smooth injury rates belie complex relationships between injuries, crowd

drive and number of agents able to exit: at low drive injuries directly prevent exits; at moderate

drive a moderate number of injuries does not affect the exit rate; at high drive, as injuries

provide a protective effect, they can act as force breaks in facilitating exits. Contrary to the

results of the floor field analysis, our results suggest moderate agent drive yields the best exit

performance, and suggests that reducing high drive would increase safety and exit rates. This is

a key result that will be used in other demonstrations; we shall also return to this point in the

general discussion in section 9.1.2.

By demonstrating force-related non-linear changes in numbers of agents exiting we have

shown that force must be treated as an essential aspect of crowd models. Important effects

like the facilitative aspect of injuries are lost if force is not considered, or if it is treated only as

an add-on parameter that scales the output of a model that otherwise does not consider force

effects. We have shown a much more complex pattern of exit times as compared with the floor

field analysis — both with the complete exit measure adopted by Kirchner and Schadschneider

(2002), and also using a fixed time measure that enables investigation of injuries (that could

otherwise block the door).

We have discussed the model’s validity, and shown how the methodology can argue for a

model’s appropriateness, while at the same time discovering aspects of the implementation and

reduction that need further investigation, and identifying areas of uncertainty in the literature.

Future work to improve the simulation of force could include provision for diagonal movement,

and a more refined conception of injuries. Although Fruin’s remarks indicate that force emanates

from individual pushing, little work exists in the literature to identify conditions that favour

individual expression of pushing behaviours; obtaining new facts in this area would significantly

improve models of crowd safety. Additionally, relation to real-world parameters like distance,

time, force thresholds and agent strength could be of interest, always bearing in mind the focus

on abstract situations. Additional experimentation could also be done with the present model; it

should be possible to use the model to suggest patterns of wall placement that can act as force

breaks: facilitating flow, reducing agent pinning and injuries, and ultimately increasing the exit

rate.
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Returning to the purpose of the three demonstrations raised in the opening paragraph of

this chapter, we identified three main goals: demonstrate the practicality of the methodology,

demonstrate the ability of the methodology to create models that take account of Sime’s concerns,

and to show that the models created have value in generating discussion and conclusions. On

the first point, this chapter demonstrates the practicality of using the methodology to generate

not only an implementation of a human behaviour (voluntary pushing) but also to generate

an implementation of an individual-based physical simulation (force and crowd safety). On

the third point, as just described, the model has generated an understanding of the nature of

forces in crowd safety, a fact that we take to justify our contention that the methodology can

generate useful results and discussion directly from the models created. The second point, of

addressing Sime’s concerns, bears some additional consideration: The demonstration adds a

very simple behaviour (voluntary pushing) triggered by agent frustration in movement, and has

added some richness to the human behaviour simulation in the model. The behaviour, however,

is undeniably quite simple and we have spent as much time in this demonstration on simulating

force itself (an investment that will be well repaid in the following two demonstrations). The

emergent force-based effects at the crowd level are physical in nature, but emanate from an

individual’s decision to push, and are thus legitimately emergent crowd-level effects flowing

from human behaviour in the form of voluntary pushing. Thus, we have come some of the way

to adopting Sime’s concerns with this demonstration.

The goal of our second MHF demonstration, in the next chapter, will be to add a much more

overtly knowledge-based behaviour simulation to agents, and will represent a much more direct

demonstration of the integration of Sime’s concerns with a microscopic model. We will build on

the results of the present chapter to evaluate how differing goals between agents affect agent

exits and safety.



Chapter 7

Discovery and communication of spatial information

The second demonstration of the methodology is to directly cause heterogeneous behaviour,

and to use the microscopic model to investigate the interactions between the groups created.

The simplest way to implement a microscopic model is for all agents to be identical, processing

the same information to the same ends: a homogeneous crowd. Real crowds, however, are

heterogeneous; different people in the crowd move according to differing goals and change

their behaviour based on local conditions (e.g. Johnson, 1987b; Still, 2000). Extreme cases

such as the Lenin stadium disaster (section 2.2.2) highlight the fact that multiple goals within a

single crowd can cause radical departures from normal crowd behaviour. When models use a

homogeneous approach, they limit their applicability to these kinds of situations.

As discussed in section 4.3.1, the creation of any crowd model rests on a conception of how

the modelled phenomenon occurs in real crowds. In contrast to the force model of chapter 6 and

the front-to-back communication model of chapter 8, the purpose of modelling differing points

of view is not the investigation of a specific individual behaviour to understand the emergence

of a group property. Rather, we are interested in using a microscopic model to look at the

effects of an emergent group property (heterogeneity) itself. There may be many different

factors that underlie heterogeneity in real crowds, and it is not necessary for us to identify

all of these factors in order to produce a heterogeneous model. We have chosen to focus on

discovery and communication of spatial information because differences in spatial knowledge

will underlie different patterns of movement and therefore a heterogeneous crowd. In chapter 8

116
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we shall continue our interest in information by investigating a different type of communication:

front-to-back communication.

7.1 Specification

In adding discovery and communication of spatial information to the model we have been

inspired by Jonathan Sime’s observation that:

It is important to note that a building or setting (such as an underground station) is
not only a physical space or structure, but an information system through which people
move. If this is remembered, it should help direct attention to the perspective of
crowd members, as well as to the physical dimensions of a setting (i.e. psychological
and engineering parameters). (1995, emphasis Sime’s)

Just as our specification of force was guided by Fruin’s observations of the effects of force

in crowds, our implementation of discovery and communication is inspired by Sime’s com-

ments. Sime emphasises physical aspects of the space and the perspective of crowd members

(psychological and engineering views) but also a third concept: that of an information system

through which people move. An information system that can be moved through implies that the

system has components that are distributed through space and that are both perceptible and

informative. Informative means “having the quality of imparting knowledge or communicating

information; instructive” (Oxford English Dictionary, 1989). Thus, Sime is describing a system

in which people gain information by moving through a space in which various locations afford

this instruction.1 To a person with more complete knowledge, the space affords more options in

terms of movement goals.

That people can extract information from their environment implies that two people close

to one another may be engaged in different actions. In exiting a space, a more knowledgeable

person may move differently (e.g. toward little-known exits) from others close to them, a

difference explained by their extra knowledge. People moving through a space are sensitive to

new information and can readily absorb it and change their behaviour accordingly. For example,

1This locality of some information, however, does not necessarily preclude global information; overhead announce-
ments may occur during an egress situation that allow people spread over a larger area to accumulate knowledge of
the space as well.
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upon approaching a blocked exit, a person wishing to leave changes their behaviour (e.g. moving

instead to an alternate exit). Similarly, a person discovering a previously unknown open exit

will assimilate this information leading to the potential for its use. (It should be noted that this

premise, in particular during an evacuation, is contradictory to the hypothesis that people panic.

It depends on a view of people as rational and capable of cognitive processing.)

It is important to note that it is not only inanimate aspects of a scenario that can carry

information. People moving through a space occupied by others are capable of sharing their

knowledge of the space through communication. Johnson has reported that shouting was futile

in a crowd disaster (1987b), so we adopt the conservative view that effective communication

between crowd members (as distinct from, say, amplified overhead announcements by crowd

managers) must be direct and personal.

It must be acknowledged that there is much that is known about information gathering and

heterogeneous crowds that is not captured by this specification. For example, issues of trust in

communicated information and the desire to use familiar exits are not captured by the premises

we have adopted. As discussed in sections 4.2 and 4.3, the microscopic human factors approach

is to simplify and abstract human behaviours in order to bring them into a microscopic model at

an appropriate scale. For the purpose of generating a heterogeneous model we do not need to

bring in additional complicating factors, and we leave their investigation to future work.

7.2 Reduction

Having explained our conception of knowledge-based heterogeneity in crowds, we turn now

to a discussion of how we can provide for these mechanisms as microscopic human factors.

The goal in reduction is to develop an abstract, formalism-neutral, individual-focused model

of the behaviour that can account for the specification. With this in mind, we aim to model

heterogeneity by introducing a simulation of divergent movement goals within the modelled

crowd. These divergent goals will arise from evolution of the beliefs of individuals, caused by

discovery and communication of new spatial facts. The ultimate source of these facts will be

an information system incorporated at the heart of the movement model. Unlike the previous
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demonstration, all of the modifications to the model will be toward the implementation of a

simple cognitive behaviour simulation for crowd members. From the specification above, we

derive the following essential, and individual rules:

Explicit mental content. The key to generating a heterogeneous model based on discovery

and communication of knowledge of space is to note that different people have differing mental

content about their environment. In a microscopic model we aim for simplicity and abstraction;

we want to avoid complicating the model with, for example, inductive or deductive reasoning. In

order to determine the effects of — and interactions between — different beliefs on behaviour, it

is essential that the set of possible beliefs be restricted in size. Thus, our abstract model maintains

certain specified and indivisible views of the world, and agents select from among these views

during model execution. These views are created by the modeller as part of specifying the

scenario.

Discovery. People accumulate information about their surroundings as they move throughout

the space. This discovery is triggered upon moving to particular circumscribed areas within

the model, whose size and placement is consistent with the modeller’s intentions with respect

to the perceptual capabilities of crowd members being modelled. Discovery of information

corresponds to changing mental content as described above. Like the mental content itself, the

discovery areas are specified by the modeller, who may choose to allow these discovery zones

to be somewhat dynamic; this allows representation of information that becomes available at

certain locations after the start of the simulation (e.g. localised announcements).

Accumulation of knowledge. Knowledge of an individual in a crowd is accumulated over

time. Learning some facts about the world does not preclude additional facts being learned

later, and later learning generally accumulates with — as opposed to supplanting — previous

mental content. To some extent this rule is already addressed by the set of indivisible mental

content, which requires the modeller to specify all possible views of the world. The present rule,

however, goes further by requiring the provision of acceptable transition rules. For example, a
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person discovering that an exit is blocked will not generally regress to a state in which they have

forgotten the blockage. (This is not to say that misinformation cannot occur. Someone can learn

of a putative exit and subsequently learn that the exit does not exist. In this case it is not that

they have regressed to an earlier state of knowledge through simple forgetting.)

Directed communication. By simulating direct communication we can use the model to

investigate behaviour engendered by people becoming informed, including misinformed, without

physically visiting the discovery locations. As noted in the specification, the communication

model is assumed to rely on direct person-to-person contact. As with the force simulation in

chapter 6, we require a simple, abstract trigger for communication. We take communication

to occur not on a random basis, but with a purpose, namely to assist in achieving movement

goals. In this sense, communication has a similarity with voluntary pushing; both are an attempt

to get a conflicting agent to adopt a more complementary movement pattern. We assume that

communication, therefore, will occur exactly in the same situations in which the agent applies a

pushing force: when movement is frustrated due to an occupying agent on the agent’s desired

cell. (Other possible purposes for communication, for example local leadership and altruism,

are left for future work.)

7.3 Implementation

The MHF methodology requires that this reduction be implemented with close fusion of the

reduced rules and the existing rules of the floor field model. The implementation discussed in

this section is presented in pseudo-code in algorithm 3 on page 126.

The changes to the model depart from the floor field model in two major respects. First, they

allow for individual agents to perceive the modelled world differently from one another, creating

a heterogeneous crowd. Second, they allow for agents to change their view of the world, either

under the influence of a new discovery field, or through a simple inter-agent communication

mechanism.
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7.3.1 Representations of space

In the floor field model, the representation of space is the static field, which encodes a distance

from points of interest. The reduction requires that the modeller make explicit all the possible

views of the world. In order to represent multiple views of the world within the floor field model,

we replace its single static field with a set of static fields. Each possible view of the world is

represented as a distinct field within this set, and each represents an indivisible and complete

view of the space.

We redefine the symbol S to refer to a set of static fields rather than the sole static field of

the floor field model:

S =
�

S0, S1, S2, . . . , Sn
	

(10)

The semantics of the static fields are not altered from the original model. Each of the fields

is created from a set of points of interest using one of several metrics (Nishinari et al., 2004;

Kretz et al., in press) to determine the distance from each cell to the nearest such point. The

last chapter took the set of locations of interest to be the same as the set of exit cells in creation

of a single static field; in this chapter, the additional static fields would typically include points

of interest at locations other than at real exits (representing blocked exits, or misinformation)

and/or would exclude points of interest at legitimate exits (representing exits that are unknown

to an agent with that view of the world). For example, a static field incorporating belief in a

non-existent (or blocked) exit would be calculated by supposing the presence of that exit and

then carrying out the standard method for calculating the static field.

Having provided for multiple representations of the world, the agents must be modified

to allow them to determine which representation is currently being consulted. Each agent is

extended by adding an integer index into the set of static fields called the view selector, ψ. The

view selector identifies the static field currently being consulted by the agent, which has no

access to the information in other static fields.
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The cell scoring function of the model (equation 5 of page 74), already modified in the last

chapter (equation 9 of page 85) is altered to take account of the view selector:

ci j = exp(kDDi j)exp(kSSψi j
) (1−ηi j)ξi j (11)

Notice that in equation 11 the term Sψi j
replaces Si j, reflecting the alteration in meaning of S

from equation 10.

Equations 10 and 11 together represent the primary change made to the floor field model to

support heterogeneous crowds based on knowledge of space. By providing a spatial represen-

tation at an appropriate scale — tightly integrated at the heart of the floor field model — we

maintain the causal connection between these rules and the emergent crowd behaviours of the

floor field model. This application of the Microscopic Human Factors methodology will allow us

to characterise the effect of adding multiple representations to the floor field model, comparing

it with the original model’s single field results.

7.3.2 Physical discovery of spatial information

As the agent moves through the space it is necessary to provide for a mechanism that allows

the agent to accumulate information, changing its beliefs about the world by updating its ψ

attribute. The reduction provides for a spatial mechanism that identifies certain circumscribed

areas as zones of detection for new spatial information.

In the ontology of the floor field model, the way to distribute information spatially is with

floor fields, and the unit of resolution of all spatial information is the cell. This suggests a new

field to manage discovery. Accordingly, we define a new floor field called the discovery field,

I , in which the value on each cell (i, j) is an integer 0 ¶ Ii j < |S| specifying the view selector

that an encountering agent should adopt.2 Encountering a cell (i, j) on which Ii j 6=ψ, implies a

potential change to ψ to bring it in line with Ii j (see figure 17).

As described in the reduction, when encountering ψ′, a new index into S from the discovery

field, agents must determine if this transition is allowed. This prevents agents from regressing

when leaving information areas. (For example, in figure 17, if the agent steps to the west, into

2The symbol I (for information) is used as D already indicates the dynamic field.
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Figure 17: Discovery field, I , set up for a proximity effect in which approaching a previously unknown
exit leads to discovery. In this example, the discovery field encodes two potential view selector values:
0 (dark cells) or 1 (light cells). These are potential agent ψ values, indices into the set S of static fields.
Suppose that in this example, S0 identifies distance only to the north exit while S1 identifies distance to
the closest exit. Suppose that the agent has ψ= 0, implying current consultation of S0 and ignorance of
the western exit; if the agent steps west, its ψ will be updated to 1, switching its view of the world to S1,
and making it aware of the western exit. If the agent with ψ= 0 steps forward, it will remain unaware
of the western exit, and may exit north (the only exit it knows about) never learning of the western exit.
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the area with Ii j = 1 we want ψ to become 1. If the agent subsequently steps east, we do not

want ψ to return to 0, as this would imply forgetting.) We have adopted a finite-state machine

approach to this problem, specifying the allowable transitions ψ→ψ′. For present purposes it

is sufficient to enforce a very simple transition rule: ψ can only increase monotonically. Thus, in

the present model:

ψ=

(

ψ′ if ψ<ψ′,

ψ if ψ¾ψ′
(12)

In the present implementation we therefore ensure that the static fields appear in the set in

order of increasing knowledge. In a two field scenario, for example, agents may initially believe

there are two exits in the space, but upon attempting to use one of the exits discover it blocked.

The former view represents a more naïve view and accordingly appears earlier in the set than

the latter. The values of the discovery field, then, represent the minimum information available

to an agent in that location, with ψ taking on the discovery field value of the local cell only if it

represents an increase in knowledge.

7.3.3 Communication of spatial knowledge

Agents encountering one another can communicate spatial information. There is no prototype

for this within the floor field model, so our direct communication model is a new development.

Communication requires both a trigger condition, and a mechanism for information transfer.

As discussed, the communication is triggered in the same manner as voluntary pushing: being

blocked in movement.

Like pushing, communication is a directed activity from one agent toward another. Accord-

ingly, a stigmergic mechanism involving an omni-directional field is a less desirable implementa-

tion compared to a more specific mechanism isolated to the two agents. Our implementation

involves a direct message from a communicating agent to a blocking agent. Communication in

this sense means sharing information in order to cause the blocking agent to be recruited to

the communicating agent’s goals; the communicating agent shares its view of the world with

the blocking agent. As view of the world is represented by the ψ attribute, communication is
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implemented by updating the ψ parameter of the blocking agent. Like the discovery mecha-

nism, communication is for information gain; accordingly, equation 12 is again used to prevent

communication-induced forgetting. The blocking agent makes use of the updated ψ parameter

on the next time step.

7.3.4 Algorithm

Algorithm 3 is the evolution of the pseudo-code for the time step function first given in algo-

rithm 1 for the floor field model, and already elaborated in algorithm 2 for the force simulation.

In this algorithm, lines 9–10 of STEP provide the mechanism for discovering information (by con-

sulting the discovery field, I , when moving to a new location) and for communicating to others

(at the same time as force is delivered). In the algorithm, the AGENT-AT function returns the agent

present on the desired cell and is considered primitive. The agent methods SET-VIEW-SELECTOR

and GET-VIEW-SELECTOR are simple accessor methods whose implementation is not shown. Other

procedures retain their implementation as given in previous chapters.

7.4 Results

The model scenarios described in chapter 6 were designed to evaluate the effects of forces on

crowds, including crowds with high drive, resulting in extreme density and high forces that can

be dangerous and cause injury. In this chapter our focus is on communication and the effect of

heterogeneity in crowds. As such, the parameter values and scenarios presented are the ones

that are the most revealing for this different purpose.

Three scenarios are presented in this section in order to show the effect of introducing

discovery and communication in the model. First, we present a baseline scenario to show how

the force-enabled model performs without any heterogeneity in movement goals. Second, we

introduce a heterogeneous simulation. Finally, we enable communication.

Like the scenarios studied in chapter 6, scenarios in this chapter take place in a room of

dimension 61× 61 cells, surrounded by wall cells. Because we are less interested in bottlenecks

and more interested in a crowd that moves enough to allow interactions between groups of



126

PROCEDURE STEP(D, S, F, I , agents)

1 DECAY-AND-DIFFUSE(D)
2 for each a in agents
3 do a.CHECK-INJURY(F)
4 ψ← a.GET-VIEW-SELECTOR()
5 a.CELL-SELECT-WITH-FORCE(D, Sψ, F)
6 for each a in SHUFFLE(agents)
7 do if a.ATTEMPT-MOVE() = FALSE

8 then a.PUSH()
9 a.TELL(ψ)

10 else a.DISCOVER(I)
11 PROPAGATE(F)

AGENT METHOD TELL(ψ)

1 s← SELF

2 (i, j)← s.GET-DESIRED-CELL()
3 r ← AGENT-AT(i, j)
4 r.HEAR(ψ)

AGENT METHOD DISCOVER(I)

1 s← SELF

2 (i, j)← s.CURRENT-LOCATION()
3 s.HEAR(Ii j)

AGENT METHOD HEAR(ψ′)

1 s← SELF

2 ψ← a.GET-VIEW-SELECTOR()
3 if ψ′ >ψ
4 then s.SET-VIEW-SELECTOR(ψ′) Â New view selector not used until next step

Algorithm 3: Step function modified for discovery and communication
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agents, we provide for many more exits in these scenarios. One wall of the room contains 10

exits, each of width 3 cells, spaced evenly along the wall (see figure 18).

We have continued to use the low and medium drive parameter values from chapter 6, but

we have changed the high drive parameter values. As discussed in section 6.5.3, the parameter

combination (kD, kS) = (0,10) produces extreme polarisation of agent cell preferences. As our

interest here is not in extreme force situations, we have adopted (kD, kS) = (0,7) for the high

drive case — parameter values that still produce relatively high drive, but largely eliminate the

aisle effect. We shall have more to say on the subject of aisle effects in section 8.4.

As described in section 2.3, actions taken in crowd situations are best viewed in light of the

information available to the individual at the time. Indeed, disaster investigations (e.g. Averill

et al., 2005) often include questionnaire studies in which survivors are asked where and when

they noticed danger cues and became aware of key facts; this information is of great interest

in understanding behaviour. Accordingly, in the results reported here we have chosen to group

agents based on ψ upon exit. This allows us to report how many agents in each information

state were successful in exiting as well as how much distance these agents covered from their

initial positions.

Although looking at the differences across groups is one way to determine the heterogeneity

of the crowd, observation is key to understanding the behaviour of a heterogeneous crowd.

By quantifying only exiting agents we naturally leave out agents who do not exit the space;

Figure 18: Physical environment for discovery and communication model scenarios. Ten exits shown
(black cells in walls) with static field (gradient). Agents not shown.
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analysis of the non-exiting agents is made more complex due to the fact that their failure to

exit is sometimes produced by interactions between the groups. We will discuss the non-exiting

agents by recourse to observation, reporting on them in the individual scenarios.

7.4.1 Homogeneous crowd

As a baseline, this first scenario contains only one static field that correctly identifies the locations

of all the exit cells (see figure 18). All values of the discovery field indicate the use of this single

static field, and all agents consult this static field from the outset of the model. Aside from the

larger number of exits, this scenario, then, is identical to that of the previous chapter.

Figure 19 shows the same analysis as in figure 12 (page 104) but for our increased number

of exits. By moving to a scenario with ample exits — rather than the bottleneck scenarios

of chapter 6 — the pattern of injuries and exits has changed. As expected, the number of

injuries has dramatically decreased and the exit rate is dramatically increased as compared with

figure 12. Redefining the high drive parameters has not altered the superiority of the medium

drive case on injuries and exits. (Welch’s t-tests were used to compare the high and medium

drive cases at each value of φ. In all cases the differences in means were found to be significant,

p < 0.001.)

We found that with ample exits, the number of injuries — even at high drive when many

agents became injured — did not have a noticeable effect on the exit rate in 350 iterations of

the model. Because injuries do not have an interesting effect on movement, in this chapter we

will generally report our results differently. We will only present exit results across values of

φ where this variable interacted with the results of interest. In other cases, we use φ = 125,

the mid-point of the explored range, and we present results as shown in figure 20a. In this

chapter, heterogeneous behaviour is of interest and so we also include a measure of steps taken

by exiting agents (figure 20b, a count of the number of time-steps in which the exiting agent

moved). This measure quantifies the directness of agent exits; by grouping agents by ψ at exit

time, we can determine whether time spent in the model is a function of what an agent knows.
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Let us consider figure 20b, the number of steps taken by agents at differing crowd densities.

At high drive, the mean number of steps to exit is 30.36, very close to the 30.5 that would be

expected for a complete optimal exit given a uniform distribution in a space of size 61×61. The

larger number of steps in the remaining two cases indicates a more circuitous route followed

due to the influence of the larger kD parameter, and consequent smaller influence of the static

field (see sections 5.3 and 6.5.1 for more on this point). At medium drive, almost all the agents

were able to exit, but many more steps were taken. At low drive, agents are not motivated to

move toward exits, and so many fewer agents exit — primarily those initially located close to the

doors; these agents, however, take very large numbers of steps before exiting (even if initially

close to the exits).

We have established baseline results for our scenario with ample exit cells, and only a true

static field. Agents are relatively unimpeded in exiting. Let us now turn to a question of discovery.

What if agents believed in a second set of exits? How would this alter the dynamics of the crowd?

7.4.2 Heterogeneous crowd

This scenario takes place in the same physical space as the previous scenario. This scenario,

however, contains two static fields. The first static field (figure 21), used by all agents at the

outset of the model, reflects all of the real exits, but also supposes an identical set of exits

Figure 21: Static and discovery fields in the heterogeneous scenario. All agents start with the static field
shown. The discovery field indicates in blue those cells that trigger a change to the second static field,
which is identical to the one displayed in figure 18.
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on the opposite wall (which are in fact blocked). The discovery field is configured so that

agents approaching the blocked exits (i.e. coming within two cells of the wall with the blocked

exits) switch to the second static field, which only reflects the good exits. For the purpose of

characterising heterogeneity on its own, we here disable the communication behaviours in the

model by disregarding line 9 of STEP in algorithm 3.

Analysis and understanding of the results depends on a description of the behaviour of the

model agents. Observations of the model reveal that there are three categories of agents at the

outset of the model:

1. agents unaware of the blocked exits (naïve agents with ψ= 0) located in the half of the

room closest to the doors,

2. agents aware of the blocked exits (knowledgeable agents with ψ = 1) who are located

within two cells the blocked exits, and

3. naïve agents located in the half of the room closest to the blocked exits.

These groups exhibit different behaviours and have different outcomes. The outcome for an

agent is not only affected by its group membership, as there is also an interaction with agent

drive. As we shall see, the freezing-by-heating paradox discussed in section 2.1.2 is key to

understanding this interaction and is well demonstrated by the heterogeneous crowd in this

scenario. We will first consider the model in the high and moderate drive cases. Then we will

consider the low drive case and return to the question of freezing-by-heating.

High drive and moderate drive cases

Observation of the model (see figure 22) reveals the behaviour interactions between the three

groups of agents, which differ only in degree between the high and moderate drive cases.

Because of the influence of the static field in these cases the agents move rapidly toward the

closest exit. Group 1 agents are free to move toward the true exits and exit readily, never

becoming aware of the blocked exits. Group 2 agents (who are joined within the first few

time-steps by a small number of group 3 agents close to the blocked exits) realise that they



133

Figure 22: Three groups of agents at discovery of blocked exits. Naïve agents exiting northwards (group
1). Note barrier formation as knowledgeable agents at south wall (group 2, blue) cannot pass southbound
naïve agents (group 3) pushing toward blocked exits on south wall. kD = 0, kS = 7, φ = 125, time step
11.

are at the wrong end of the room and begin to move toward the real exits. The remaining

group 3 agents approach the blocked exits and encounter group 2 trying to move in the opposite

direction.

In these cases, group 3 quickly forms a barrier for group 2 and vice versa. Because the exits

are spaced evenly along the walls, the group 3 agents form into a band stretching from wall to

wall; because of the large number of group 3 agents, the band is many agents deep, and (barring

injuries) can physically push group 2 back toward the blocked exits. In the high drive case,

the band forms rapidly, is high density and is impenetrable to group 2. In the moderate drive

case, the band is slower to form, is less dense, and some group 2 agents are able to infiltrate

themselves through the band.

Let us take up the question of injuries. Injuries (figure 23) followed the same pattern as in

figure 12 in that higher drive to achieve goals results in more injuries. Injury rates are generally

lower than in the scenario of chapter 6 because there are ample exits available along one wall,

which accommodate many agents per time step. The porous wall reduces crowd density and

hence movement conflicts at the exit. Note that the x-intercept of the high density case is at a

lower value of φ in figure 23 than in figure 19; this occurs because enough agents are detained

in the barrier formation to reduce the potential for injuries by further reducing density (and

hence force) at the exits.
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Figure 23: Agents injured in exiting from the blocked exit scenario without communication

Observation of the model shows remaining injuries are primarily concentrated where groups

2 and 3 meet. Injuries occur as group 2 agents (unable to make their way forward) exert force

upon the tightly packed crowd of group 3 agents, and vice versa. As φ increases, injuries fall

within the model as the agents are not numerous enough to bring a crushing force to bear (recall

that group 1 agents exit quickly in all cases). Regardless of whether the situation is complicated

by injuries or not, the stable barrier formation persists and a stalemate ensues in which neither

group 2 nor group 3 exits the model.

This situation is reminiscent of the Lenin stadium disaster described in section 2.2.2 in which

a smaller group colliding with a bigger one created a large number of injuries. It is also consistent

with with Fruin’s observation that injuries within a crowd are not distributed at random, but

follow patterns of force that accord with the context of the situation (Fruin, 1993).

This stable configuration — with or without injuries — explains the fact that exit rates are

independent of φ in this scenario. Accordingly, as we now turn to the question of exits from the

space and distance travelled we show only results for φ = 125 for clarity.
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The pattern of exits engendered by the model (figure 24a), together with our observations,

confirm that group 2 agents (ψ = 1) are, for the most part, unable to exit in this scenario. In

the high drive case only 1.3 knowledgeable agents on average manage to exit; they originate

adjacent to the blocked exits and are able to move toward the real exits before the group 3

agents have fully blocked the route. In the moderate drive case the group 3 agents approach

more slowly giving on average 32.8 agents a chance to escape the crush and move to the exit.

The numbers of agents exiting with ψ = 0 in both the high and medium drive cases is the same

because these are the group 1 agents (expected to number half of the 1116 initial agents) who

have time for a complete exit in the high and moderate drive cases.

In terms of distance travelled (figure 24b), exiting knowledgeable agents withψ = 1 required

many more steps to exit than did naïve agents with ψ = 0. Note that agents exiting with ψ = 1

may have originated either in group 2 (knowledgeable at the outset) or in group 3 (naïve at the

outset, but gaining knowledge through discovery).

Low drive to exit

Model behaviour when drive to exit is low is quite different from the previous cases. In this

case, the low influence of kS relative to kD means that agents display only a weak movement

bias toward areas believed to be exits. The classification of agents into three groups is still

meaningful in terms of explaining their behaviour, but the dramatic conflict between groups 2

and 3 does not occur. This is because the group 3 agents do not move toward the blocked exits

in large number, leaving large spaces that allow group 2 agents the freedom to infiltrate toward

the real exits. Indeed, the space created by moving group 2 agents allows agents from group 3

to move into the blocked exit area, discover the blockage, and join the group 2 agents in moving

toward the open exits.

Referring to figure 24, however, it is clear that avoidance of a stalemate between groups 2

and 3 does not translate into exits by knowledgeable agents with ψ = 1. This is because the

agents, even though they are knowledgeable about blocked exits are simply not driven to move
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toward the real exits. The exit and step pattern for low drive agents in figure 24 is essentially

the same as that shown in the baseline case of figure 20.

Section 7.4.1 determined that in a scenario with the same number of real exits as this

one egress was not impeded and minimal injuries occurred. In the present scenario, simply

by introducing belief in a set of blocked exits, the heterogeneity of the crowd resulted in a

much lower exit rate and a much higher injury rate. In this case the conflict occurred due to

agents working at cross-purposes. Agents that had discovered information moved one way,

while agents who had yet to discover the information moved in the other. In this scenario,

the communication potential of the agents was suppressed, and so physical discovery of the

information was a necessity. Let us now determine the value of inter-agent communication by

activating the communication simulation within the model.

7.4.3 Communication in a heterogeneous crowd

In this scenario we take up exactly the same situation as in section 7.4.2, except that we now

enable the communication functionality of the model (line 9 of SIM-STEP in algorithm 3). In

cases where they are blocked in movement, agents will now communicate their view selector to

the blocking agent.

In this scenario, the same three groups arise at the outset of the model as occurred in the

last scenario. As the simulation unfolds, however, the barrier formation where naïve group 3

agents and knowledgeable group 2 agents jam one another in place does not occur. This is

because when a naïve agent moves to block a knowledgeable one, the knowledgeable agent

communicates its view of the world, updating the ψ value of the naïve one; this has the effect

of explaining the blocked exit condition to the naïve agent, turning it into a knowledgeable one.

Both agents move off toward the real exits, informing other conflicting agents on the way (we

shall discuss the issue of trust below).

The injury and exit rates in this model demonstrate the value of communication. Injury rates

for this scenario (figure 25) are much improved from the non-communicating case (figure 23
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Figure 25: Injuries with communication enabled

in section 7.4.2), to the point of being comparable (if not identical) to the results of the

homogeneous scenario (figure 19 in section 7.4.1) in which all agents were knowledgeable.

When agent drive is high, injuries are actually improved slightly from the baseline case

reported in section 7.4.1; this occurs because the larger number of steps for agents in group 3

has the effect of delaying their arrival at the exits, consequently reducing density and pressure

in that area. This effect, however, becomes minor as agents become more resilient: we note

that the x-intercept at high density has been restored to approximately the same value as in

figure 19; now that the barrier formation has broken down, the pattern reverts to one in which

all agents are knowledgeable and hence density, force and injuries return to the same as in the

homogeneous case.

Figure 26 shows exit results broken down by ψ value. In interpreting this graph we must

bear in mind that communication causes transitions between the ψ groups at exit time if there

is a bottleneck. This is a consequence of our abstract trigger mechanism that presumes agents

communicate whenever blocked in movement. Knowledgeable agents arriving at a bottleneck
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will communicate with the rearmost agents at the exit. These agents in turn will communicate

with those in front. The word travels quickly in a dense crowd, and soon all agents exiting from

the bottleneck are counted as knowledgeable agents. Similar challenges relating to determining

who knew what when also occur in investigations of real crowd incidents, and explain the focus

of investigators on when people became aware of various aspects of the situation. This level

of data collection is beyond the scope of what is reported here, leading to watering down of

differences between groups.

This comment is important in understanding the appearance of even exit rates between

ψ values in figure 26a. Some exiting group 1 agents actually exit with ψ = 1. Although the

majority of agents left after 350 time-steps originated in the far half of the space, they recruit

enough agents to skew the figures. Despite this, figure 26b shows that heterogeneity is preserved

in the crowd. Even with some watering down of differences between groups, agents with ψ = 1

still take approximately three times as long to exit on average in these cases. Once again, agent

drive accounts for the reduction in exit rate for moderate and low drive cases.

7.5 Discussion

Freezing-by-heating. Let us now return to the question of freezing-by-heating. Section 2.1.2

discussed this paradox in terms of two groups of agents wishing to pass through one another in

opposite directions, and we alluded to its demonstration in the force simulation in section 6.8.

In section 2.2.2 we reviewed the Lenin Stadium disaster that exemplified freezing-by-heating.

When we introduced differing agent goals at high drive through discovery in section 7.4.2 we

replicated this effect (the interaction between groups 2 and 3 providing a direct simulation):

At low agent drive, crowd densities and speeds remain low, allowing for an accommodation

as groups 2 and 3 infiltrate themselves through the gaps in the opposing group. When drive

becomes moderate, the density increases and there are many fewer empty spaces in the band

formed by group 3. This leads to interference between the groups and limited potential for

group 2 agents to access the real exits. In the high drive case, the group 3 agents essentially form

an impenetrable wall, and the group 2 agents are pinned behind it. Thus, as the energy of the
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system increases from the low drive to the high drive case, the resultant pattern of interaction

between the groups becomes more rigid, culminating in a frozen stand-off when energies are

highest. By introducing heterogeneity into a crowd movement model, we have been able to

demonstrate this effect which is not seen if all agents behave identically in their move toward

the exits.

We note that jams in counter-flow have been directly studied in the floor field model

(Burstedde, Kirchner, Klauck, Schadschneider, & Zittartz, 2002), these jams were quite sim-

ple. They were orchestrated by directing equal-sized fixed groups of agents at one another

and do not involve force or any kind of ‘heating.’ Our study of freezing-by-heating involves

emergence of groups due to dynamic discovery of spatial information, emergence of jamming,

force, injuries and communication. This is a more realistic scenario and a better demonstration

of the principle.

We note that the freezing-by-heating paradox adds an additional argument to the urgency of

calm and measured movement for the sake of safety in crowded conditions. It has been noted

in fire disasters, however, that slow response times waste valuable time early in an emergency

(Sime, 1995) which may leave insufficient time for an orderly and measured egress. Our results

suggest that competitive increases in drive can result in a frozen crowd.

Situatedness and knowledge representation. Let us now consider the heterogeneity of the

crowd. In a sense, the original floor field model can be seen as supporting a heterogeneous

crowd because the static field can break a crowd into sub-crowds that move toward differing

targets. This occurs because the floor field model naturally provides for a situated simulation. In

keeping with the concept of situated cognition in cognitive science (Smith, 1999), agents directly

consult their immediate surroundings (the local neighbourhood in the static field) regularly,

making local movement decisions based on current conditions (including the movement of other

local agents); this can be contrasted with a traditional artificial intelligence approach to planning

that pre-computes complete and optimal paths in an abstract planning environment, with the

actual path traversal delegated to a separate system in a distinct process. The heterogeneity

present in our model goes beyond the sub-crowd-based heterogeneity of the floor field model.
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This is because the sub-crowds in the floor field model are themselves homogeneous. We have

introduced a mechanism for agents to be part of the same crowd, in the same physical area, and

yet not be focused on the same objectives.

The differences in exit performance by agents with different information states (represented

within the model by different values of ψ) does quantify a pattern of heterogeneous behaviour

within the crowd. We note, however, that differences within information states can be as

important as differences between such states. For example, agents with ψ= 0 are divided into

groups 1 and 3 because of situated information processing despite their identical mental content.

This difference between agents that have the same mental content demonstrates how the MHF

approach to integrating cognitive processing preserves the situatedness of the floor field model.

By integrating knowledge representation at the level of movement rules within the individual,

our method produces agents that are highly situated.

7.6 Model validity

Implementation. At the implementation level we compare the behaviour of the model to the

intended abstract crowd behaviour specified in the reduction. The differences in performance

for agents with distinct ψ, as well as observations of the differing behaviour of these agents,

indicates that the model has implemented the mental content requirements of the reduction.

Discovery by agents occurs upon entry to specified areas within the modelled floor space, and

the multiple static fields and equation 12 provide for the accumulation of knowledge. Coupling

directed communication with the pushing mechanism, a straightforward change given the

implementation of chapter 6, has been verified by observation.

The other task at the implementation level is to determine if the implementation formalism is

appropriate for the reduction. In general we have found the floor field model, as augmented by

our force simulation, to be a natural implementation medium for the reduction. As discussed in

section 7.3.2, the state transition rule to increase ψ strictly monotonically to model knowledge

accumulation has been adequate for the investigations here; a more elaborated finite-state

implementation would provide for more flexibility where required.
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Reduction. At the level of the reduction we ask whether the rules provided were sufficient

to implement the effects we described in the specification. The specification was derived

from Sime’s description of a scenario as an information system distributed through a physical

environment. Experiments with the model demonstrate that, indeed, the reduced rules transform

the space of the floor field model into an information system capable of radically altering agent

behaviour upon discovery of new information. We also noted in the specification that in a

heterogeneous crowd, physical proximity is not a good predictor of similar behaviour; this has

been amply demonstrated by the model, for example, when group 2 and group 3 agents interact.

Introduction of communication into the model has added additional richness to the informa-

tion system, allowing agents to become aware of their environment without physically visiting

locations of interest. As we intimated in section 7.2, communication is a highly complicated

behaviour that is deployed to many different ends and is triggered in many different ways. A

more complete specification of communication itself, and subsequent modelling to investigate

its mechanisms is accordingly left to future work.

Specification. Ultimately, validation at the level of the specification asks what the model

can tell us about crowd behaviour. This demonstration was different in goal from that of the

previous chapter. Here, we decided to directly provide for a heterogeneous crowd to investigate

the interactions between the groups created within the crowd. As stated in the specification,

it was not our intention to model all possible causes of heterogeneous crowds, or all factors

in their maintenance. We found, however, that modelling discovery and communication did

lead to a heterogeneous crowds in which force dramatically affected movement in the model;

heterogeneity totally changed the ability of agents to move freely within the space, results that

accord with reductions in capacity due to crossing flows (Still, 2000), and reproduced the type

of crowd disaster that occurred at Lenin stadium (section 2.2.2).

Introducing communication into the model increases the chances that adjacent (conflicting)

agents will begin to act in the same way (by sharing world views). Our number of steps measure,

however, demonstrates continued heterogeneity, as the time-line of knowledge acquisition for
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each agent influences their pattern of movement over the life of the simulation — and ultimately

time to exit in the scenarios studied.

Introduction of discovery and communication has, then, improved the model with respect

to Sime’s concerns. By making agents more relevant to real people through the use of the MHF

methodology, we have shown agents that are no longer interchangeable, as their personal history

within the model is now relevant to understanding their behaviour and performance. There is

ample room for further work in this regard, as egress researchers have begun to consider the

role of occupant experience with physical structures in understanding behaviour. The ‘fire and

ICE’ concept (Gwynne & Boswell, in press), for example, argues that learning by occupants, by

exposure to information during ingress and circulation, is crucial to understanding what they do

in emergency egress. This observation suggests that egress models must become more general,

simulating occupants in everyday use of a space as well as in egress, and allocating to exiting

agents the knowledge acquired during the exploration/occupancy phase (Gwynne & Kuligowski,

in press). An abstract investigation of this approach could use the model described here as a

starting point, and we leave this interesting possibility for future work.

7.7 Summary

We have extended the floor field model further from the force model of chapter 6, adding a

model of discovery, communication and representation of knowledge. Basing our specification

on Sime’s observation that crowd situations are information systems through which people move,

we have allowed agents within the model to obtain spatial information from the environment as

they circulate through the space.

Although we did not set out to model all possible factors that underlie crowd heterogeneity,

we conclude that our premises do generate a heterogeneous crowd, although not necessarily

along the lines of information state alone; the geometry of the space is also relevant, as agents

are situated and take action based on local information, despite having more general knowledge.

Obtaining new information leads to new movement goals, and, depending on agent drive,

conflicts between agents of varying severity. This led, at high agent drive, to a barrier formation,
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a reproduction of freezing-by-heating behaviours that echo the Lenin stadium disaster described

in section 2.2.2. The simple impetus for heterogeneity in this model leads to the possibility of

investigating other factors that lead to heterogeneity, and we leave this process to future work.

Although it may seem evident, it is worth noting that the ability to represent heterogeneous

crowds and differing mental content allows for modelling more complex and realistic scenarios.

Although we can fix mental content at the outset of a simulation, this allows for studying only

small scenarios in which agents are interchangeable and not particularly realistic. As we have

seen in our blocked exit simulation, and as seen at Lenin stadium, many situations unfold in

several phases and without being able to represent changing goals we are unable to represent this

within the model. If a model cannot represent these non-trivial — but interesting — scenarios, it

misses out on discovering the interesting interactions between groups in the simulation. We offer

our additions of discovery and communication, and their effect on evolving mental content, as a

contribution in this regard beyond their role as simply demonstrations of the MHF methodology.

We found that communication in crowds can be a powerful mediator for crowd forces when

it brings about a change in behaviour that is more complementary between groups. We found

that it eliminated the barrier formation in the model, resulting in dramatic increases in exits

and decreases in injuries. As noted above, communication is much more complicated in the

world than we have represented here. Altruism and leadership (role) would be two examples

of communication that are left to future work. Several parameters to communication are also

possible, for example how likely a person is to engage in communication when blocked, or to

believe a communication when received. We leave these parameters to future work as well.

One question is raised by the positive effect of spatial communication in dissolving barrier for-

mations like the one that occurred at Lenin Stadium. Would improved knowledge (e.g. through

spatial communication) of the spatial aspects of that situation have helped crowd members avoid

a disaster? We suspect that the Lenin Stadium disaster did not include any spatial disagreement

among crowd members. After all, the exiting people knew the direction to the exits, and the

re-entering people knew the direction back to the field. Since spatial communication dissolves a

barrier formation only by resolving disagreements about spatial facts, it does not help situations
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that do not have any disagreements about spatial facts. It is simply the wrong tool for the job in

such cases.

In chapter 8, we shall consider a different type of communication: front-to-back communica-

tion. This type of communication is not oriented at sharing spatial information. Rather, it focuses

directly on reducing the crowd forces that cause injuries. We shall return to the question of the

Lenin Stadium disaster when we consider the effects of this different type of communication on

barrier formations in section 8.6.



Chapter 8

Front-to-back communication

This chapter forms the third demonstration of the use of the Microscopic Human Factors method-

ology. This demonstration differs from the demonstrations of chapters 6 and 7; while those

chapters studied well-known (or, at least, accepted) mechanisms for crowd behaviours, this

chapter uses the methodology to more prospective ends: exploring a mechanism that has not

been previously described in detail.

We have seen in section 2.1.2 and chapter 6 that crowd disasters frequently involve high

pressures that cause crushing injuries and death by compressive asphyxia. One might ask why

people continue to apply pressure in these situations, given its disastrous effects. It has been

suggested that failures in front-to-back communication are common in crowd disasters (Fruin,

1993; Pauls, 1984). These failures occur when those applying force at the rear of a crowd do

not know of important conditions (e.g. blocked exits, fallen people) at the front of a crowd. As

forces become large, those at the rear also do not know that their actions are injuring those at

the front. This may explain continued pushing behaviours in these disasters.

A good example of a failure of front-to-back communication occurred at the Who concert

disaster at Riverfront Coliseum (see section 2.2.3). Johnson’s analysis of the event suggests

that people pushing at the rear of the crowd were unaware of problems at the front (Johnson,

1987b). Although the media described the event as a stampede driven by mob psychology,

Johnson found the opposite, that helping behaviours were widespread, even between strangers.

147
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Although front-to-back communication failures have long been suspected as a significant

factor in the unfolding of a crowd disaster, we have not found in the literature a systematic in-

vestigation of front-to-back communication in crowds, neither its mechanisms, benefits or model

studies. This means that although we hypothesise that increased front-to-back communication

would be helpful, we do not know the circumstances under which front-to-back communication

is possible or what benefit could be practically expected from employing it. We do not know

whether situation-specific factors affect front-to-back communication. This demonstration of the

methodology represents the first steps at characterising this crowd-level behaviour, investigating

some of these issues within the context of a microscopic crowd model.

The organisation of the chapter proceeds as follows. We first develop a specification for

front-to-back communication itself, as it has not previously been formally described, and provide

a reduction. We then turn to the details of our implementation of this reduction. We use the

resulting simulation model to explore front-to-back communication in a simple laboratory-like

scenario. Wishing to consider how a more realistic scenario affects front-to-back communication,

we reconstruct the Who concert disaster in the model, making plausible observations concerning

mechanisms of this disaster, and looking at those mechanisms when front-to-back communication

is added. We return to the question of communication at Lenin stadium before closing with

some preliminary conclusions on the nature of front-to-back communication in crowds, and

proposals for further research work.

8.1 Specification

We are not aware of a study of front-to-back communication in the literature — either a formal

review of case studies or a theoretical discussion about how front-to-back communication works

within a crowd. Consequently, as the behaviour is not well understood, we here provide a

hypothesis about how front-to-back communication could work in a crowd.

As noted in chapter 7, the person in the crowd is part of an information system. There is no

reason, however, to consider this system to be composed only of the inanimate surroundings,

or only to be concerned with physical structure. Information concerning the emergent crowd
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conditions can also be communicated, and this is what is meant by front-to-back communication.

Specifically, we are here concerned with force and injuries. In our view, there are four processes at

work in effective front-to-back communication in a real crowd. These are: initiation (the creation

of the front-to-back communication signal), propagation (movement of the message from front

to back), direct action (helping behaviours) and decay (resumption of normal behaviour). We

shall address each of these processes in turn:

Initiation. People likely employ several cues in a decision to initiate communication. These

could include crowd density, movement, experienced force, noise level, visual observations, and

other factors. By analogy to the bystander effect (helping behaviour in an emergency is inversely

proportional to the number of bystanders, c.f. Latané & Nida, 1981) that is reduced when

situations appear more dangerous (Fischer, Greitemeyer, Pollozek, & Frey, 2006), we assume

that social pressure to appear poised in an emergency will decline in importance as perception of

physical danger increases. Accordingly, in specifying front-to-back communication we highlight

the importance of perception of safety in the decision to communicate.

Propagation. When people get the message that those in front are experiencing negative ef-

fects, we hypothesise that people can do things to reduce the negative effects. One simple action

that seems generally possible even in a dense crowd is repeating the message toward the rear. As

in chapter 7, we acknowledge reports that yelling a distance of 10 feet was impossible due to the

noise at Riverfront Coliseum (Johnson, 1987b). Thus, we take front-to-back communication to

be a distributed process of communication that involves direct personal interactions. As in other

confusing or noisy environments, successful communication requires two things: first, obtaining

the attention of another individual, and second, directly communicating a simple message to

them. Propagation of front-to-back communication through the crowd depends on consecutive

repetition of the information over time. We suspect that the key to successful propagation is

a simple message. We feel a simple message, like “tell the people at the back to stop pushing”

or “people are getting hurt in front” is most likely to be repeated over a distance without being



150

distorted. (We shall consider the question of successful propagation in section 8.8; see also the

discussion of section 9.1.)

People in large crowds do not have an overall view of an unfolding crowd situation and

may not know their exact position. They are restricted to diffuse sources of information like

smells or noise levels, or purely local information like level of experienced force. They cannot be

expected to know why others push or move in particular directions.1 Interpretation of cues may

be especially difficult in a complex situation with distributed focal points, heterogeneous crowd

goals and multiple points of attraction. As previously discussed, the behaviour of individuals is

best understood with respect to the information available in the local environment at the current

time. Accordingly, we presume that, when we speak of front-to-back communication, ‘back’ is

not a global concept, and can only be determined locally. Two people, even in close proximity,

may conclude that the back of the crowd lies in different directions.

Helping behaviours. Fruin tells us that in a densely packed crowd, individual control can

be lost (1993), as seen at Riverfront Coliseum where people were powerless to avoid the

fallen (Johnson, 1987b). Thus, many people within a crowd have limited ability to take

action beyond the propagation just described. Some people, particularly those not experiencing

high forces, have the capability to act more directly by taking action to mitigate the negative

effects experienced by crowd members further forward. Johnson reported a willingness to help

(1987b); helping actions could range from complex (e.g. contacting security personnel) to

simple (relaxing goals, increasing patience and decreasing applied forces).

Decay. We hypothesise that provision of helping behaviours is a temporary process that is

self-limiting. People in crowds are independent, and in the case of moving crowds, have an

objective that they are trying to achieve. As they do not have access to global information, a

decision to help does not imply knowledge of how long to help for. In the absence of other

1Knowledge of others’ intentions is an interesting problem in agent-based modelling, and has been studied
generally in the context of economic games like the prisoner’s dilemma (e.g. Axelrod, 1984). This is related to the
philosophical question of ‘theory of mind,’ in which we try to determine and understand what others believe (see e.g.
Gopnik, 1999).
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information, we hypothesise that people will return to their normal behaviour. Should future

communication arise, helping behaviours may arise again.

By specifying our front-to-back communication mechanism in the absence of data from real

crowds, we leave open the possibility that these processes may not completely capture the

behaviour of front-to-back communication in real crowds. However, our goal is a qualitative

investigation (a quantitative model would require model parameters for which experimental

measures have yet to be forthcoming). We believe that this specification is plausible for the

purpose of evaluating the potential benefits of front-to-back communication, as well as the

viability of person-to-person directed communication within a crowd.

8.2 Reduction

The goal of the reduction is to take our hypotheses about front-to-back communication and to

create an abstract description of them: essential situated rules specified from the point of view

of an individual within the crowd. Here, we provide a description of each process identified in

the specification:

Initiation. A person consciously initiates front-to-back communication, based on stimuli that

are cognitively available in the local environment. As discussed in the specification there are

several types of cues that can potentially be considered, but we put a priority on personal

safety cues. The primary threat to personal safety in crowds is extreme forces (a belief that has

motivated the modelling work of chapter 6). Thus, in our model, front-to-back communication

is initiated in response to a perceived threat to safety from an experienced strong force (e.g.

resulting from external restriction on an agent’s desired actions). In other words, we suppose

that people use the force they are experiencing in the crowd as a source of information, and use

this information as the basis to initiate front-to-back communication. We feel that as other types

of cues (e.g. visual or auditory ones) would hasten rather than delay communication, leaving

their investigation to future work is a conservative decision in evaluating the effectiveness of

front-to-back communication.
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Locating the rear. As discussed in the specification, only local, or general non-specific infor-

mation (like sound and smell) can be used in determining direction for communication. In

initiation, as in retransmission (below), we use experienced force as a source of information;

the direction opposite to the experienced force is taken to be the back of the crowd. There are

three reasons for this decision. First, front-to-back communication is about reducing force upon

agents at the front; using force as a predictor of the direction rear seems like a plausible choice

for this type of message. Second, as with initiation, using a simple local mechanism like force is

conservative. Third, as we are using force for initiation of communication, in an abstract model

using the same source of information for propagation is parsimonious. Note that as force has

an emergent evolution with time, people’s concept of the direction toward the back will also

change with time.

Retransmission by dyads. Just as in chapter 7, we take this form of communication to be an

interaction between two individuals. In order for front-to-back communication to be effective,

this process must be repeated from one person to another in the crowd. Like force, information

takes time to propagate. We cannot assume that those at the back will immediately know about

communication initiated at the front. In an abstract model of front-to-back communication the

exact content of the message is less important. Accordingly, we speak of a simple signal that is

propagated. This could consist of a simple spoken message, or even a physical signal assuming

it were to be generally understood.

We assume that force must reach a certain level before retransmission is possible. This

is because in the absence of a perceptible force gradient agents cannot determine the rear as

described above. We hypothesise that frequent small jostles are prevalent in crowds, this is a

noisy signal that we do not want to propagate, or use in behavioural decisions (like determination

of the ‘back’).

Helping behaviours. The specification acknowledges that agents who are in low-force areas

can potentially execute helping behaviours. Complex behaviours (e.g. reporting a problem to

authorities) are outside the scope of investigation using a microscopic model. Simple helping
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behaviours are nevertheless possible. As we have seen in chapters 6 and 7, by reducing drive

to reach goals crowds can become safer. In addition, we assume that people who are capable

of voluntarily pushing can cease to do so, although their involuntary leaning forces cannot be

controlled. Accordingly, helping behaviours in the model include cessation of voluntary pushing

and drive reduction.

Decay. The time-based mechanism of the specification is directly adopted by the reduction. Af-

ter a delay agents will discontinue helping behaviours and will return to their normal behaviour.

8.3 Implementation

Building on the model of chapter 6, we have implemented the rules of the reduction in the

context of the floor field model with our force additions. The four key processes of initiation,

action, retransmission and decay are implemented as follows in our front-to-back communication

simulation. An algorithm for these processes is given in section 8.3.1.

Initiation. Just as in chapter 7 where communication of spatial information was linked to an

existing agent behaviour (in that case, to frustration in movement) we have linked the initiation

of front-to-back communication to another existing agent threshold. The reduction specifies that

force and a threat to safety are the triggers for front-to-back communication. We believe that

the force at which agents lose control of their own movement is a salient and worrying level of

force to experience. Thus, we couple initiation of front-to-back communication to the χ force

threshold at which agents are forced to select the cell in the direction of incoming force (i.e.

when an agent perceives a loss of decision making capability).

Similar to the communication mechanism of chapter 6, a direct agent-to-agent communica-

tion is used. Agents deliver a simple signal toward the back. In accordance with the discussion of

local information in the reduction, ‘back’ is defined locally at the time of communication as the

direction opposite ~fi j , the vector sum of force bosons present on the agent’s cell (equation 7 on

page 84), and is quantised using equation 8. Agents who initiate front-to-back communication
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and continue to experience force above the threshold may initiate communication again on the

next time step.

Action. An agent initiating or accepting front-to-back communication will take action in two

ways. First, the cell selection function (originally specified as equation 5, modified as equations 9

and 11) is further adapted by introducing a new factor multiplying kS:

ci j = exp(kDDi j)exp(mSkSSψi j
) (1−ηi j)ξi j (13)

When the signal is received, the new mS factor changes from 1 to 0. This dynamically eliminates

the receiving agent’s desire to move toward exits by eliminating consideration of the static

field. As we have seen in chapters 6 and 7, this reduction in agent drive causes a slower move

toward the exit, reduces crowd density and can reduce injuries. The second action taken is

that agents refrain from voluntary pushing when blocked in movement. Involuntary pushing

continues as normal, as does normal propagation of existing force. (The communication of

spatial information of chapter 7, if applicable, also continues as normal.)

Retransmission. An agent that receives one or more front-to-back communication signals in

time step t will consequently retransmit up to once (one signal to one other agent) during time

step t + 1 only. Future retransmissions require further signal reception; as initiating agents may

initiate consecutively, this further signal reception is not unlikely. Retransmission only occurs if

the scalar force present on the retransmitting agent’s cell exceeds its pushing force, ρ (taken as

the perceptual detection threshold for force), and if a non-injured agent exists in the selected

direction. In accordance with the local information premise, a retransmitting agent reverses the

force vector on its own cell to determine which way appears ‘back’. Communication then occurs

identically to initiation.

Decay. Agents acting upon front-to-back communication signals have a probability, γ, evalu-

ated each time step, of returning to normal behaviour. Normal behaviour involves a resumption

of voluntary pushing, as well as normal cell selection through mS = 1.
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8.3.1 Algorithm for front-to-back communication

The time step function, already elaborated in previous chapters, is modified again for front-to-

back communication, and given by algorithm 4. Following the pattern already established, the

procedures GET-SIGNAL-STATE and SET-SIGNAL-STATE are simple accessors whose implementation is

not shown.

The requirement that retransmission should be delayed to the time step after receiving a

signal requires the introduction of a new agent property signal-state that operates like a finite-

state machine, taking a value from the following set: {NIL, DELAY, ALLOW, ALLOW-AGAIN, DONE}.

All values except NIL indicate the agent is currently honouring the signal and will refrain from

voluntary pushing (line 9) until decay of this state (line 14). The normal pattern is that agents

receive a signal and enter the DELAY state. Upon the next time step DELAY becomes ALLOW, the

signal is re-transmitted, and ALLOW becomes DONE. The ALLOW-AGAIN state indicates that a signal

was received during the ALLOW state, implying that retransmission should be done in the current

time step (like for ALLOW) and also in the next time step (like for DELAY).

For clarity and brevity, additional notation has been introduced in calls to the agent method

RESET-SIGNAL-STATE (primitive, implementation not shown). This method accepts a list of im-

plications. If any antecedent is equal to the agent’s current signal-state, then the signal state is

assigned its consequent. If no antecedent matches then no change is made to the signal-state.

Thus, the statement RESET-SIGNAL-STATE(a→ b, c→ d) is equivalent to:

1 if SELF.GET-SIGNAL-STATE() = a
2 then SELF.SET-SIGNAL-STATE(b)
3 elseif SELF.GET-SIGNAL-STATE() = c
4 then SELF.SET-SIGNAL-STATE(d)

8.4 Laboratory scenario

We have evaluated the proposed front-to-back communication model using three different scenar-

ios: a simple laboratory-type scenario, a realistic scenario (Riverfront Coliseum) and a scenario

reminiscent of the Lenin stadium disaster. The laboratory scenario adopts the same scenario and

parameters used in chapter 6 in order to determine whether front-to-back communication alters
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PROCEDURE STEP(D, S, F, I , agents)

1 DECAY-AND-DIFFUSE(D)
2 PREPARE-AND-INITIATE-SIGNALS(agents)
3 for each a in agents
4 do a.CHECK-INJURY(F)
5 ψ← a.GET-VIEW-SELECTOR()
6 a.CELL-SELECT-WITH-FORCE(D, Sψ, F)
7 for each a in SHUFFLE(agents)
8 do if a.ATTEMPT-MOVE() = FALSE

9 then if a.GET-SIGNAL-STATE() = NIL or ḟi j > χ

10 then a.PUSH() Â voluntary pushing bypassed if honouring signal
11 a.TELL(ψ)
12 else a.DISCOVER(I)
13 if RANDOM()< γ Â decay the action of front-to-back communication
14 then a.SET-SIGNAL-STATE(NIL)
15 for each a in agents
16 do if a.GET-SIGNAL-STATE() in {ALLOW, ALLOW-AGAIN}
17 then a.TRANSMIT() Â retransmission of signal
18 PROPAGATE(F)

PREPARE-AND-INITIATE-SIGNALS(agents)

1 for each a in agents Â unlock retransmissions from last step
2 do a.RESET-SIGNAL-STATE(DELAY→ ALLOW)
3 for each a in agents
4 do (i, j)← a.GET-CURRENT-CELL

5 if ḟi j > χ

6 then a.TRANSMIT() Â Initiate front-to-back communication
7 a.SET-SIGNAL-STATE(DONE)

AGENT METHOD TRANSMIT()

1 (i, j)← s.GET-CURRENT-CELL

2 if ḟi j > ρ Â Agent pushing force is minimum for determining direction
3 then (i′, j′)← CELL-IN-DIRECTION( f̂i j + 180, i, j)
4 AGENT-AT(i′, j′).HEAR-SIGNAL()
5 s.RESET-SIGNAL-STATE(ALLOW→ DONE, ALLOW-AGAIN→ ALLOW)

AGENT METHOD HEAR-SIGNAL()

s.RESET-SIGNAL-STATE(DONE→ DELAY, NIL→ DELAY, ALLOW→ ALLOW-AGAIN)

Algorithm 4: Step function modified for front-to-back communication
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the patterns of injuries or exit time. We set the probability of decaying helping behaviours to

γ= 0.1, giving an expected duration of 10 time-steps. This is a moderate value for γ, and we

leave a complete exploration of this parameter’s value to future work.

8.4.1 Effect on injuries and exits

Figure 27 compares the results of chapter 6 to the same scenario with front-to-back communica-

tion enabled. We find that introduction of front-to-back communication into a laboratory-type

scenario reduces injuries. This occurs regardless of agent drive. An important question that

arises from these results is how exit rates are affected by the reduction in injury rates. Figure 27

indicates that front-to-back communication does affect the exit rate.

At low drive, agents are primarily guided by the movement of others. In this case the drive

to exit and crowd density remain low, injuries are not a significant factor, and front-to-back

communication further slows what is already a non-urgent exit from the space.

When agent drive is moderate, crowd density is also moderate. Introducing front-to-back

communication improves the exit rate when φ is low; as agents are easily crushed in this case,

front-to-back communication reduces forces, postponing injuries, and allowing more agents

through the exit before it becomes clogged with injuries. When agents are more robust, numbers

of injuries drop, revealing that — in the absence of injuries — the tendency of front-to-back

communication to produce a more patient crowd results in lower exit rates.

Unlike the low and moderate drive cases, the high drive case shows an alteration of the multi-

phase interaction with φ (discussed in section 6.7.1). The new relationship has a functional

form more similar to the medium drive case, with many more agents exiting. Observations

of the model suggest that adding front-to-back communication to the high drive case reduces

the strong forces that usually accompany fast movement toward the exit and consequent high

crowd densities. We observed that front-to-back communication both reduced injuries and also

resulted in a faster exit. Let us examine these results further.
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Figure 27: Effect of front-to-back communication in a laboratory scenario. Upper results for injury, lower
results for exits. Lines identified by × are copied from figure 12. Lines identified by + indicate results
with front-to-back communication.
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8.4.2 Effect on the aisle

This third case, in which the exit rate is facilitated, is quite interesting in the context of the

results of section 6.5.2 concerning the aisle region. In that analysis we found that high pressures

in the crowd led to a formation called the aisle — a region centred on the door extending from

the front to the back of the crowd in which agents are able to exit even under high pressure

(figure 28a). By contrast, agents adjacent to the aisle are not able to choose a lateral step

into the aisle because the forward pressure upon them exceeds χ and they are pinned in place.

A stable configuration of this sort greatly decreases the exit rate. Recall that when injuries

were introduced into the model an interaction emerged between φ and the exit rate in which

moderate φ values (circa 95 in figure 27) provoked moderate numbers of injuries that acted

as force-breaks within the crowd. These force breaks shortened the life of the aisle pattern by

allowing individual action closer to the front.

When we introduce front-to-back communication into the model the aisle pattern disappears

entirely. The results of figure 27, along with observations we have made of the model, suggest

that front-to-back communication is an alternative to force breaks in facilitating exits during

high-pressure egress. When front-to-back communication occurs within the crowd, agents

effectively communicate with those behind them, reducing the pressure below χ. This prevents

a. No front-to-back communication b. With front-to-back communication

Figure 28: Disappearance of the aisle region with front-to-back communication. Light grey agents exceed
χ and are pinned in place. Yellow dots indicate injured agents. Both with kS = 10, kD = 0, φ = 105, time
step = 175.
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aisle creation as agents control the force upon them sufficiently to allow the lateral steps that

they would otherwise be prevented from making. With no force breaks required, high φ values

(where injuries drop to zero) do not impede the exit rate and the aisle does not form (see

figure 28b). Low φ values continue to produce high numbers of injuries and a consequent

decrease in exit rate through clogging of the exit area by injuries.

This suggests that there may be multiple mechanisms at work to prevent the formation of

the aisle region in crowds. We have now suggested three mechanisms that reduce aisle effects,

namely introduction of injuries, allowance of diagonal steps (proposed as future work), and

now front-to-back communication. The fact that front-to-back communication reduces injuries

and eliminates the formation of the aisle indicates its effectiveness at controlling force in the

model, as well as emergent crowd structures that depend on force.

In chapter 6 we used the protective effect of injuries to argue that force in crowds was an

essential aspect of crowd modelling, particularly at high densities. The results of this section,

although they simplify the high density behaviour, do not invalidate our point. The low φ results

indicate that when injuries occur, the non-linear response in the exit rate persists.

The scenario of section 8.4, just discussed, shows that under laboratory-type conditions

front-to-back communication can indeed reduce injuries at the cost of a longer exit time. At high

density and high drive, the most dangerous crowd scenario, injuries are reduced and exits are

facilitated. We may well ask how front-to-back communication affects a more realistic scenario.

We turn to that question now.

8.5 Who concert disaster scenario

In order to provide further support for the hypothesis that front-to-back communication can

improve crowd dynamics, we wanted to evaluate the effect that front-to-back communication

could have in a non-laboratory situation. We chose to simulate the Riverfront Coliseum concert

disaster because of an encouraging and detailed account of communication and social behaviour

(Johnson, 1987b), and the good descriptions of the physical surroundings and events (Johnson,

1987b; Chertkoff & Kushigian, 2001).
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8.5.1 Reconstructing the plaza at Riverfront Coliseum

The plaza of the coliseum has been altered since the time of the disaster; we attempted, however,

to reconstruct its physical dimensions based on three sources: a news photo taken by the

Cincinnati Enquirer the night of the disaster (Cincinnati Enquirer, 1979/1999), an aerial photo

of the original plaza and building ([Riverfront Coliseum], n.d.) and a schematic from Johnson’s

account of the disaster (1987b). Johnson’s schematic is reprinted here as figure 29 (to which all

reference marks refer).2 Despite perspective effects, we were able to produce a consistent plaza

geometry.

The news photo shows a bank of 8 doors at location A. We supposed these doors were full

size (914 mm) establishing our scale. The news photo also shows a large squarish column (∼ 4

doors wide) at i, and a smaller column (∼ 1 door wide) at the building-lobby junction near A

(call this BLJ). These estimates fix the length of wall A at 11.8 m. The view of the doors at B

in the news photo is partially obstructed, but Cherktoff and Kushigian say there were 8 doors

there as well. From the news photo it appears the doors at B were flanked by column i and an

identical column on the opposite side, setting wall B at 14.6 m long. The wall measures set the

scale for figure 29 (used for all front-to-back estimations, scale set from length of A) and the

aerial photo (used for all side-to-side estimations, scale set from the doors at B). The model’s

x axis is parallel to wall B; the model’s y axis is parallel to wall A.

The lookout at the right of the plaza is an isosceles trapezoid with height 3.9 m, whose

parallel sides measure 37.1 m and 44.6 m. Remaining side-to-side dimensions (all projected

onto the x axis) are: BLJ to E 17.7 m, E to ii 4.9 m, ramp width 15.6 m. Remaining front-to-back

dimensions (all projected onto the y axis) are: ii to F 17.8 m, BLJ to iii 47.5 m, E to BLJ 10.9 m,

the wall of C opposite A is 5.9 m.

We needed to set the size of a grid cell in the floor field model, choosing 56 cm, the

commonly cited (if dated) reference human body width (Pauls, Fruin, & Zupan, 2007). The

above estimates were quite consistent, only requiring minor adjustments of ±1 cell to make the

2The other two photos cannot be included for copyright reasons. The Cincinnati Enquirer refused to give
permission to reprint their photo. The aerial photo appears unattributed on the Internet; inquiries made as to the
source of the image were not returned. The reader is directed to the URL addresses in the references if he or she
wishes to review the images.
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Figure 29: Plaza at Riverfront Coliseum, reprinted from Johnson, 1987b, p. 366, fig. 1. The shaded zone
indicates the area of highest pedestrian density. Johnson’s reference marks are in upper case: A-South
doors, B-North doors, C-common lobby, D-casualties, E-broken door, F-officers. Our reference marks have
been added in lower case, and are further identified in the text.
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various structures line up correctly. The 56 cm cell implies approximately 13 cells per bank of 8

doors. We interpreted remarks that insufficient doors were open by supposing that half of the

doors were open, so we have included 6 exit cells in the centre of each bank.

Although a police officer inside the coliseum reported “there must be 8000 people standing

on the outside trying to get in,” (qtd. in Johnson, 1987b) we feel from the description of the

officer’s circumstances that this was conjecture rather than a reliable estimation. Given our

estimates and our square grid cells, 5000 agents provided a very high density sufficient for our

purposes. We initially distributed these agents randomly within the shaded (high density) area

of figure 29.

8.5.2 Analysis of the disaster

We ran the simulation using the same settings used in the laboratory experiments, except that we

fixed kS and kD at 1.0 and 0.5 respectively due to the high forces produced by this scenario (see

below). We sampled a range of φ values from 100 to 300, with and without the front-to-back

communication simulation active, for the first 350 time steps of model execution. As with

previous sections, we report on means of 50 simulations for each parameter combination.

First we consider the scenario without front-to-back communication enabled. We found that

forces were high and the scenario was prone to producing injuries. In such a large scenario,

injury thresholds have a strong effect on injury distribution. This is because, at low values of

φ, agents rapidly become injured throughout the crowd due to the relatively small numbers of

other agents required to inflict damage (see figure 30a). Injured agents throughout the crowd

then prevent force from propagating over long distances. When φ is higher, injuries are more

focused because many ranks of agents are required to generate the cumulative forces required

to cause injuries.

In observing the simulation, we noted that injuries tend to appear first at a force hot spot.

While conscious of the fact that our model is only a qualitative simulation and reconstruction

from secondary sources, our observations of the simulation suggest that the area around D

(where injuries occurred in the real disaster) is particularly prone to being a site for injuries
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a. φ = 100, time step = 350 b. φ = 210, time step = 161 c. φ = 210, time step = 350

Figure 30: Riverfront Coliseum scenario without front-to-back communication. Exit cells are green,
agents are grey, agents experiencing force above χ are light grey, injured agents are yellow.

(figure 30b). When these forces continue to be applied at a high level, our model shows

injuries continuing to propagate from the area around D onto the plaza, toward the ramp

(figure 30c). We shall discuss the formation of the hot spot and the reasons for the continuing

injury propagation separately.

Hot spot formation. Our model is most sensitive to injuries at location D, where injuries

did occur on December 3, 1979. Fruin proposed an explanation for this location of injuries at

Riverfront Coliseum, suggesting that “crowd pressures probably came from both directions as

rear ranks pressed forward and front ranks pushed off the wall” (1993). Our observations of the

model point to a different mechanism for the force hot spot at location D. In our simulation, the

hot spot is located at the crossing point of two sources of force (figure 31). When the geometry

and lack of intermediate force breaks allowed, pushing and leaning forces originated from those

on and exiting the ramp, quickly overwhelming the free choice of agents in front of them on

the plaza. Agents on the plaza were forced to add their pushing and leaning forces toward D
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rather than allowing them to aim for B. Thus, large cumulative forces travelled over significant

distances from the ramp toward D. These forces were compounded by a second source of force,

as agents near the coliseum end of the lookout generated additional perpendicular forces toward

D.

Compared with Fruin’s, our hot spot theory gives a more plausible explanation for these

injuries. The hot spot theory accounts for the fact that injuries occurred at a specific point: the

crossing point of the forces. This contrasts with Fruin’s suggestion which is more compatible

with a line of injuries between A and F. Our reconstruction of the coliseum also suggests a reason

that injuries were set back from the door at D, rather than occurring right at A; the geometry

of the ramp is such that the door area is not accessible on a straight line from the ramp (see

figure 31).

Continuing injury propagation. The continuing propagation of injuries onto the plaza (fig-

ure 30c) was not reported in the disaster. We note here three possible reasons for this discrepancy.

First, our model does not distinguish between fatal and non-fatal injuries; non-fatal injuries in

the crowd at this event are poorly documented and there may indeed have been high forces

propagating to these locations. Second, other non-modelled factors in the scenario (e.g. the

sudden increase in drive toward the exits brought on by the band’s warm up) may be relevant

in limiting peak injuring forces to particular time periods (a point we shall return to in sec-

tion 9.1.3). Third, it may simply be that our abstract force model based on a uniform grid of cells

lacks the fidelity to model additional dissipative factors that prevented injury in these locations

despite continuous pushing.

8.5.3 Comparison with front-to-back communication

We turn now to the results (figure 32) of enabling the front-to-back communication simulation

in the Riverfront Coliseum scenario. We found that, as with the laboratory scenario, agents

were able to control forces over a long distance, substantially reducing the number of injuries.

As the lobby was the movement goal for agents, it is not surprising that at high values of φ

(when injuries are low) remaining injuries occur in this area. Observations of the model suggest
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Figure 31: Perpendicular forces (white arrows) create injury hot spot (grey circle) at Riverfront Coliseum.
Note that hot spot cannot move to the left toward the doors, as ramp wall constrains further leftward
movement.
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Figure 32: Effect of front-to-back communication at Riverfront Coliseum
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injuries were more distributed, with hot spots for injuries near i, near the exits and between A

and E. We found that injuries within the model did not have an impact on egress rate. As φ

increased, making agents less susceptible to injuries, exit rates remained constant.

In summary, introducing front-to-back communication into the model resulted in a more

patient, less forceful crowd. This had a consequent effect to decrease the exit rate, which was

also unaffected by numbers of injuries.

8.6 Return to Lenin Stadium

In section 7.4.2 we generated a scenario similar to the one that occurred at Lenin Stadium

(section 2.2.2). At Lenin Stadium, freezing-by-heating caused deaths and injuries when two

groups of people attempted to pass through one another at high drive. Although we did not use

the physical dimensions of the real event, we did reproduce a barrier formation similar to the

one that led to the deaths in that situation. In our reproduction, the barrier arose because of

disagreement among agents about spatial facts. When agents were able to communicate, the

barrier formation was dissolved because agents resolved their spatial disagreements.

At the end of chapter 7, we raised the question of whether the spatial communication of

chapter 7 could have helped at Lenin Stadium. We concluded that as spatial disagreement was

not present, the spatial communication of chapter 7 was the wrong tool for the job in that case.

In the present chapter, however, we have introduced a different type of communication

aimed at reducing force and injuries that are due simply to pushing forces originating at the

back of a crowd, and this is more suitable for the scenario of Lenin stadium. Would improved

front-to-back communication (as opposed to the spatial communication of chapter 7) have

helped at Lenin Stadium? Recognising that — in the absence of an accurate physical simulation

— our scenario is highly abstract, we can nonetheless enable front-to-back communication in the

scenario of section 7.4.2. For comparative purposes we have used only the high drive parameter

values from section 7.4.2 (kS = 7 and kD = 0).

Although we have just argued that the front-to-back communication condition is the one

most applicable to Lenin Stadium, it is not necessarily the only option in other scenarios where
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barrier formations may arise. Barrier formations generally are also worthy of study. This return

to the scenario of section 7.4.2 also offers the opportunity to study a combination of both

front-to-back and spatial communication on barrier formations without regard to Lenin Stadium.

Accordingly we present this additional data as well.

8.6.1 Results

Injury results, shown in figure 33, suggest that front-to-back communication alone (our Lenin

Stadium case) is successful at moderating force in a barrier formation. Accordingly, we conclude

that improved front-to-back communication at a disaster like the Lenin Stadium disaster could

have been protective.

As discussed, although spatial communication might not have helped at Lenin Stadium,

this does not mean that no situation featuring a barrier formation could benefit from spatial
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communication. We have characterised spatial communication alone in section 7.4.3, but what

if front-to-back communication was also present in such a scenario?

When we enabled both types of communication we obtained the best injury performance,

with spatial communication breaking up the barrier formation and front-to-back communication

protecting agents near the exits. The x-intercepts of the curves also are revealing because they

identify the peak force experienced by agents within the crowd in the various cases. As discussed

in section 7.4.3, spatial communication generates higher forces because all agents quickly learn

the location of the true exits, rush to the doors with high drive, and forces can be high due

to higher densities under these conditions. Adding front-to-back communication to the spatial

communication was protective in this regard, as peak forces were lowest in this condition as

read from the x-intercept of figure 33. This is further evidence of the ability of front-to-back

communication to mitigate the forces generated at high densities and high drive.

Turning to exit results, we first note that as with most of the results of chapter 7, the exit rate

was not affected by injuries. Accordingly, results are shown in figure 34 to allow for comparison

between ψ and comparison of communication types. Introducing front-to-back communication

alone (despite the results of figure 33 showing reduced injuries) did not allow for many more

knowledgeable agents to exit in the time allotted; although it reduces injuries by limiting

None Spatial Front-to-back Both
0

100

200

300

400

500

600

700

A
ge

nt
s

ex
it

in
g

ψ= 0
ψ= 1

Figure 34: Comparison of communication styles on a barrier formation. φ = 125, kS = 7, kD = 0
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pushing, front-to-back communication also eliminates drive to exit by setting mS = 0. (In other

words, it does not dissolve the barrier formation, it simply reduces the danger inherent in being

a part of it.) In combination with spatial communication, however, front-to-back communication

dramatically improved exit performance. This is only partially evident in figure 34 due to

a ceiling effect in which all agents were able to exit in each replication of this parameter

combination. The mean time to exit was 146.2 time steps. This rapid exit was possible because,

as discussed above, front-to-back communication prevents forces from building up and limiting

movement at high drive.

8.7 Model validity

As we have done for the previous two demonstrations, we now turn to the question of the validity

of our front-to-back communication model. This demonstration differs from the previous two, as

our goal is to demonstrate the methodology at work in a more speculative mode. The properties

of front-to-back communication behaviour have not previously been described formally, and

indeed front-to-back communication itself has been defined and discussed only in the context of

its absence from certain crowd disasters. Accordingly, providing an argument for our model’s

relevance to the real world is very important.

Implementation. The validation goal at the implementation level is to determine if the micro-

scopic human factors have been appropriately implemented. This includes the simple question

of implementation correctness, but also the appropriateness of the formalism selected for imple-

mentation. The reduction for front-to-back communication is quite naturally implemented in

the context of the floor field model, which has proven to be an excellent formalism for all of the

demonstrations of the methodology. Through observation of the model we have verified that

the four basic processes of initiation, retransmission, action and decay correctly implement the

reduction. No simplifying assumptions were required.

Reduction. At the reduction level, the task is to determine whether the reduction is an appro-

priate abstraction of the specification. As discussed above, we have taken quite an abstract view
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of our specification. According to the specification, cues for initiating front-to-back communica-

tion and for determining the back of a crowd are complex; the reduction provides for simple

force-based mechanisms in both cases. These mechanisms, however, are seen as conservative in

the sense that the omitted complexity would likely result in easier triggering, and more accurate

retransmission. It may be possible to introduce more complexity into the microscopic model to

capture some of the nuances introduced by these other cues, however this is left to future work.

One advantage of implementing and testing a model for a behaviour that is not completely

understood is that, in so doing, we ensure that the behaviour is completely described. For

example, problems determining the location of the back of a crowd might not be anticipated

if it were not required to provide a complete abstract model of the behaviour. The results of

the simulations demonstrate that the abstract model is able to reduce injuries and manage

pushing forces. In this respect, the reduction has demonstrated its sufficiency as a mechanism

for distributing a signal from the front to the rear of a crowd, with increased safety in mind. It is

able to meet the goals of the specification, and as all the major elements of the specification are

represented in the reduction, we conclude the reduction is acceptable to meet our specification

of front-to-back communication in crowds.

Specification. The purpose of validation at this level is to determine the extent to which

the model is a representation of the behaviour of real crowds. As discussed in section 4.3.2,

abstract microscopic models can provide a forum to explore how things can work, and to explore

mechanisms. Like in many areas of research that seek to explain complex human behaviours,

the results of our analyses should be viewed as one piece of evidence out of many; we begin to

develop a coherent picture of a complex behaviour as other disciplines join in and we accumulate

multiple pieces of confirming evidence that reinforce our theory about how the behaviour works.

This chapter demonstrates the methodology in a prospective mode to investigate an emergent

crowd behaviour that is not well understood. Given the prospective nature of this chapter, there

are few results from other disciplines to mesh our results with. Although we can appeal to case

studies and Fruin’s and Pauls’ general comments, it is fair to say that our model does not prove

that front-to-back communication exists, or that it works in real crowds. We can say, however,
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that if front-to-back communication works as our specification suggests, it can in principle reduce

injuries in circumstances of extreme force and high density and drive. This is more than could

be said before.

Our hypothetical specification of front-to-back communication was inspired by the three

case studies in chapter 2. We have considered two case studies in this chapter so far. One in

depth (Riverfront Coliseum) and one in a more abstract manner (Lenin Stadium). In the case of

Riverfront Coliseum, we argued for a similar pattern of injuries between the model results and

published accounts of the disaster; that these injuries were dramatically reduced by introduction

of front-to-back communication supports our view of this kind of communication as protective.

At Lenin stadium, a barrier formation developed as two groups tried to move through each other

at high pressure; in our model front-to-back communication reduced the injuries (although it

did not eliminate the barrier). Finally, we are left with Fruin’s comments that crowd disasters

can be understood as a failure of front-to-back communication. Our results support Fruin’s point

in that switching off front-to-back communication can have serious consequences in the case of

high density, high pressure crowds (see section 9.1.3 for more on this point).

8.8 Discussion

The work of chapters 6–8 suggests a crucial role for people at the back of a crowd at a bottleneck

(such as in egress or ingress). These people, although far from doors, can nonetheless constrain

the behaviour of those near the exit, jam intervening people in place, and ultimately induce

injuries by activating and targeting the leaning forces of others. These injuries may occur far

from the rear agents; as we have seen from Johnson’s account, however, it is likely the media

will lay the blame on those closer, who actually had no control over the outcome.

The introduction of front-to-back communication places an extra responsibility on those

at the rear. They are the only ones who can actually choose to withhold pushing forces, and

hence prevent the cascade of pushing and leaning that causes injuries, and compromises exit

rates through jamming. With front-to-back communication, those at the rear, in principle, can

dynamically reduce drive as needed to maintain the safety of others, and this mitigates some
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danger in a high-density, high-drive crowd situation. If front-to-back communication is functional

and honoured then this produces the best exit rates. However, if front-to-back communication

is not honoured, then, as seen in figure 27, high drive is counter-productive, producing many

injuries at high density.

It is one thing to say that honouring front-to-back communication produces the best exit

rates, and another to say there will be time for everyone to exit. When time constraints become

extreme (e.g. in fire egress, in crazes or even in the case of dwindling time to enter a concert),

the rearmost crowd members are the ones who have the least probability of reaching the exit

in orderly egress. Competition can develop, and a situation recalling the prisoner’s dilemma

(e.g. Axelrod, 1984) can emerge. A globally optimal solution is for the rearmost agents to

co-operate fully in front-to-back communication, increasing patience and ensuring the best exit

rate for those in front. From the point of view of the individual in the rear ranks, however,

this does not maximise personal likelihood to exit; rather than increasing patience, changing

positions in the crowd (to move closer to the exit relative to other agents) would increase

the probability of a successful outcome. In this situation, the rearmost individuals may well

become less willing to honour the front-to-back communication signal, particularly if they do

not understand the consequences of this behaviour (see also section 9.1.1). Regardless of the

outcome of this ethical dilemma, if forces are applied from the rear the result is the jamming and

injury reported in chapter 6; rearmost agents, along with those in front, are negatively impacted

by the faster-is-slower paradox in this case.

All of this suggests investigating the effects of less-than-perfect compliance with the front-

to-back communication protocol. Although we leave it to future work, adding probabilities of

initiation, of honouring the front-to-back communication protocol and of re-transmitting the

signal could easily be added to algorithm 4. (The probability for initiation can be added to

line 5 of procedure PREPARE-AND-INITIATE SIGNALS; for honouring to the start of the HEAR-SIGNAL

procedure; for re-transmitting to line 17 of procedure STEP, with a few minor housekeeping

details in the state.)
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8.9 Summary

Although previous research has identified failure of front-to-back communication as an impor-

tant characteristic of crowd disasters, it seems fair to point out that without examples and a

description of successful front-to-back communication it is hard to put its failures into context.

In other words, in order to speak of a behaviour that has failed, we must be able to say how the

failure is different from successful cases of the behaviour.

Our goal was to study this phenomenon within a microscopic model to determine what

potential benefits front-to-back communication may provide, and the effect of introducing front-

to-back communication into a crowd situation. We have proposed a model of front-to-back

communication that includes: initiation based on a loss of individual movement control, retrans-

mission through successive dyads, behaviour modification for parties to the communication in

the form of reduced voluntary pushing and movement drive, and a time-based method of decay

of this behaviour modification. We implemented this conception of front-to-back communication

in our modified floor field model, building on the product of chapters 6 and 7. Our results

suggest that front-to-back communication does have the potential to reduce damaging forces in

a laboratory scenario, at the cost of reducing the exit rate due to increased patience. At high

drive, front-to-back communication decreased injuries and increased exits.

To evaluate front-to-back communication in the context of a more realistic scenario, we re-

constructed the geometry of the plaza at Riverfront Coliseum in Cincinnati, Ohio that witnessed

the Who concert disaster of December 1979. We based our approximation of this space on sec-

ondary sources, such as published diagrams and photos, and obtained a consistent conformation.

Although our simulation is designed to obtain qualitative results relating to the introduction

of front-to-back communication, we found that our model predicted a force hot spot, with

subsequent agent injuries, in the same area that saw real injuries in 1979. The results suggest

that forces built up over a long distance from the plaza ramp toward the coliseum, and were

compounded by perpendicular forces from the plaza lookout; this improves on Fruin’s suggestion

that injuries occurred when forces from people pressing off the front wall met forces coming

from the rear. When we added front-to-back communication the number of injuries decreased
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substantially, as did the exit rate. These results suggest that front-to-back communication may

be protective in crowd situations, at the cost of exit rate.

We have suggested three areas for future work on the front-to-back communication sim-

ulation. First, taking non-force cues into account in the initiation and retransmission of the

front-to-back communication signal. Second, investigating initiation, co-operation and retrans-

mission probabilities to establish the degree of compliance required for benefits to occur, and

whether benefits degrade smoothly with a decrease in compliance. Third, investigating the

change in effectiveness brought on by changes in decay probabilities. We further note that un-

like at the Who concert tragedy, many crowd venues now have voice communication systems and

overview facilities for trained crowd management personnel. We would like to consider the inter-

actions that global information and communication may have with front-to-back communication

in a crowd situation.

We have now demonstrated the Microscopic Human Factors methodology in three different

applications. From these three applications, however, come certain joint conclusions, to which

we now turn. We shall then comment on the value of the methodology in general and return to

a consideration of Sime’s concerns.



Chapter 9

General discussion

The work of chapters 6–8 was concerned with demonstrating the use of the Microscopic Human

Factors methodology in adding human behaviour to microscopic models. Each chapter has built

on those that came before, and each has come to certain conclusions about crowd behaviour

along the way. When taken in concert, however, they have more to tell us, particularly when

combined with important papers from the literature. The first purpose of this short chapter,

then, is to present this general discussion of model results, and we shall do so in section 9.1.

These demonstration chapters, however, were presented first and foremost as examples of

the Microscopic Human Factors methodology at work. We shall turn to a discussion of the

methodology in section 9.2. The methodology itself was presented as a way to bring Sime’s

concerns into the microscopic modelling domain, and we shall return to these questions in

section 9.3. Thus, this chapter unwinds the themes of this thesis in reverse order, bringing us

back to our goals and the motivations of chapter 1.

9.1 Crowd disasters

9.1.1 Training in front-to-back communication

In section 8.8 we discussed the important role of those in the rear who, our work suggests, are

the only ones with the freedom of action needed to prevent jamming and injuries in crowds.

We pointed out that rearmost agents — by pushing — unleash and target the leaning forces of

others in a high-density crowd. But, do people in crowds understand this role? If we take media
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reports to represent general understanding then they do not — as evidenced by the focus of the

media on those near injuries who are literally forced to injure others (Johnson, 1987b).

People in emergencies take the actions that make sense to them at the time, given their

prior knowledge and experience, the information available at the time and available cognitive

processing resources under pressure (Proulx, 2002). For example, to an untrained person,

breaking a window to vent room smoke in a high-rise fire may make perfect sense; someone

with knowledge of the stack effect and building airflow might make a different decision given

their increased knowledge and the circumstances. Similarly, in a crowd disaster, it does not seem

likely that most crowd members will recognise the counter-intuitive faster-is-slower paradox, or

understand the important role of those at the rear. Indeed, if a disaster like Riverfront Coliseum

does occur, because of the low awareness of the mechanisms involved, those at the rear may

never realise the part they played in it. In these circumstances, we cannot fault people at the

back who engage in what they believe to be harmless pushing without recognising the danger,

even if they are the cause of forces and injuries (see also sections 2.3 and 2.4).

If the people involved in crowd events are not at fault but crowd disasters continue to occur

then we must determine how these situations can best be prevented in the future. One way

may be to directly educate people about the dangers of high-density crowds, the important role

of those at the rear and the value of front-to-back communication. This would fall under the

category of altering crowd members’ prior knowledge and experience. For example, a social

convention for an easily recognised signal that can be propagated throughout a crowd could be

devised.

Before recommending formal instruction in front-to-back communication for all dangerous

crowds, we must consider whether all crowd disasters are well suited to improved front-to-back

communication. Guided by Fruin’s statement that “most crowd incidents exhibit a failure of

front-to-back communication” (1993), our study suggests that if front-to-back communication

is present in crowd situations it improves safety. However, this does not mean that it can be

introduced into every crowd situation. In particular, some disasters happen very quickly: at

Bethnal Green, for example, “in a matter of seconds there was built an immovable and interlaced

mass of bodies 5 or 6 or more deep against which the people above and on the stairs continued
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to be forced by the pressure from behind” (Dunne, 1943/1999). It is hard to see how even

perfect training in front-to-back communication could have produced measurable results in this

time-frame, given the number of ranks built up and waiting to enter.

Although it is hard to see how the events of Bethnal Green could have been slowed down,

the same is not true of all crowd disasters. While some crowd situations unfold very rapidly,

there are crowd situations that entail considerable risk and at which crowd forces build up over

a much longer period of time. Large, slow, organised crowd events (e.g. the Hajj) may support

instruction and training in a front-to-back communication protocol. We are aware of one such

protocol that we call the Halifax fire drill protocol, taught to students as young as 8 years old:

when following a line of people to an exit during a smoky fire, the turning around of the person

in front is a signal that the exit is blocked.1 Our results suggest this strategy of formalising simple

front-to-back communication protocols is promising and merits further study.

The concerns about timing discussed in this section lead to a suggestion for future work:

In our simulation the speed of force, information and movement is the same (all have a rate

of 1 floor field cell per time step); an abstract investigation of the sensitivity of egress rate

and injuries as measures of communication effectiveness when varying force and information

propagation speed would be quite interesting.

9.1.2 Often there is plenty of time to support the outcomes we want

Directly training people in front-to-back communication is not the only way to go about improv-

ing crowd safety. We have raised the question of time in the previous section; our results directly

support a view of crowd safety that has more to do with time than communication.

As we have seen, agent drive has a large impact on crowd safety. The provision of timely

information can be a factor in determining agent drive. Speaking specifically about fire egress,

Sime has noted (e.g. 1995) that the egress time is composed of pre-movement components t1

1This protocol was related to us by a former student of the Halifax school board (J. A. Schellinck, pers. comm.,
2007). Enquiries at the school board (D. Bell, pers. comm., Aug. 22, 2007) and at the Halifax fire department
(C. MacDonald, pers. comm., Aug. 17, 2007) indicate that this policy was not implemented board-wide and a fire
department officer with 25 years of experience (11 years in fire prevention) was unaware of it. Although it cannot be
conclusively shown this is the case, this protocol was likely the local creation of a staff member in the specific school,
and has not been formally studied.
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(such as detecting fire cues, deciding to leave and preparing to leave), and movement time t2.

Total egress time t is thus given by t = t1 + t2 and not by t = t2 as generally modelled (a

limitation of our model as well).

In part, these comments are due to work by Proulx and Sime who noted that early, accurate,

specific information allows people time to leave a building in an orderly manner (Proulx & Sime,

1991). In other words, it is possible to ‘buy time’ by starting egress sooner; often time allows

orderly egress, but egress is delayed due to a late warning (sometimes for fear of causing ‘panic’)

or due to insufficient drive to exit. Proulx and Sime argue that “rather than avoiding ‘panic,’ a

delay in warning the public is self-fulfilling. When an incident such as a fire gets out of hand,

the delay is paradoxically a major determinant of flight behaviour, crushing and deaths in major

crowd disasters” (1991).

Let us consider Proulx and Sime’s statement in the context of our simulation. We have studied

three cases across chapters 6–8: high drive, medium drive and low drive. At low drive, agents

do not move to the exits in large numbers. When a limited number of time steps is available

to them, many of them fail to exit due to this low drive. This accords with Proulx and Sime’s

views: in emergency egress low drive wastes time. As time becomes a factor, Proulx and Sime

describe a transition to flight behaviour, which we interpret to correspond to high drive. The

results of chapter 6 suggest this is a dangerous regime. Despite this, chapter 8 (if front-to-back

communication works as our specification suggests) offers the hope that, if rigorous adherence

to front-to-back communication protocols is observed, injuries can be prevented and high exit

rates can be maintained. As we have argued in section 8.8, however, the people at the rear

may be boxed into an impossible position: push and cause a jam through faster-is-slower, or

co-operate and risk being trapped as time runs out. Clearly the better solution is the medium

drive case; if time allows (and this requires prompt notification to building occupants who must

then respond promptly and seriously) then the medium drive case allows an optimal number of

people to exit safely.

Could the medium drive case have been encouraged at Riverfront Coliseum? The work of

Proulx and Sime suggests an important role for better information. If a public address system had

been available, for example, the promoters could have informed fans that the band was warming
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up, that the doors would open behind schedule, that the concert would be delayed to allow

everyone to enter, and that there was no need to rush. Of course, our model does not tell us that

this specific suggestion would have worked, but rather that some method that produced medium

drive would have been a better bet than hoping for front-to-back communication. This could

have included pre-event factors, such as proper event planning, facility capacities, emergency

plans, crowd management, etc.

This discussion suggests two pieces of future work: investigating dynamically changing agent

drive, and modelling pre-movement time. If some fire disasters are characterised by an initially

apathetic response, followed by a high-drive phase, it should be possible to investigate this

within the model by providing for agent-by-agent dynamic kS and kD values. Changes in these

parameters could be driven by time, or by discovery of fire cues along the lines of chapter 7.

Modelling of pre-movement time is a task as daunting as it is needed, as it requires modelling

decision-making processes that are totally dependent on information in the shape of fire cues,

inter-agent milling and communication. Despite the challenge, decision-making under pressure

(including the role of emotion) is a fertile area for research in cognitive science, and one that

could produce significant benefit to crowd and fire egress modelling.

9.1.3 Was it a failure of front-to-back communication?

Let us now return to Fruin’s statement that “most crowd incidents exhibit a failure of front-to-

back communication” (1993). Is this statement supported by our research? In a strictly literal

sense the answer is yes. After all, Johnson’s research (1987b) suggests that people are at their

best in disasters, and if those at the back of a crowd understood the direct consequences of their

actions we have no doubt that crowd disasters would be much rarer. Also, we have shown that

when front-to-back communication is functioning crowd safety is enhanced, while in the absence

of front-to-back communication injuries increase. The work discussed in section 9.1.2, however,

gives us an alternate explanation that is equally supported by our model: The reason crowds

find themselves in need of enhanced front-to-back communication is a transition in agent drive

from low to high as time dwindles and competition appears.
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In our view, the more nuanced answer to the question of this section is that Fruin’s statement

is a consequence of a broader view of Proulx and Sime’s work. This view depends on generalising

Proulx and Sime’s observations to low→ high drive transitions more generally, dropping their

emphasis on information management and fire egress. Let us consider two of our case studies in

this light: At Bethnal Green (section 2.2.1) what was an orderly (moderate-drive, we suppose)

descent into an air raid shelter became a high-drive flight when the noises of war became

apparent, prompting the pressure on the stairs, the subsequent fall, and the jamming transition

that ensued. At Riverfront Coliseum, Chertkoff and Kushigian describe the surge in the crowd

(transition from stasis→ high-drive) that occurred as the doors opened, leading to a fall due to

uncontrollable forces at the front.

Elements of the descriptions of these events (Dunne, 1943/1999; Johnson, 1987b) make

clear that failure of front-to-back communication did occur in both of these cases at the time

of transition to high drive. If front-to-back communication along the lines of our hypothesised

mechanism had been successful, our analysis suggest it might well have reduced injuries. In this

sense, our work supports the idea that a failure of front-to-back communication was exhibited.

However, without the transition in drive it is not clear that either event would have become a

crowd disaster. In our view, it may be more promising to look toward drive in characterising

crowd disasters.

Although precise timing for these disasters is not available, it is interesting that both featured

salient auditory environmental cues that could have acted to synchronise the transition from low

to high drive throughout the crowd. Namely anti-aircraft guns at Bethnal Green and the sound

of the band warming up at Riverfront Coliseum. This may be relevant given our hypotheses

about time to propagate information and force from section 9.1.1. Our conception of front-to-

back communication depends on a slow build-up of force that allows time for initiation, for

information to travel backwards and for pushing to discontinue; to avoid injury this process must

run to completion before force builds to the threshold for injury near the front. If a synchronised

transition to high drive occurs in a high-density crowd, however, high forces may occur before

the front-to-back communication process runs to completion. On this view, injuries could have

been mediated by effective front-to-back communication, except that conditions for effective
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front-to-back communication are absent. Accordingly, if a synchronised transition from low to

high drive did occur, it may be a better explanation to say that the co-ordinated transition in

drive caused the disaster.2

The discussion of this section raises three questions that could be fruitfully answered in

future work. First, a review of crowd disasters could be undertaken, looking for the type of

synchronisation that we hypothesise could have been at work at Bethnal Green and Riverfront

Coliseum. Second, descriptions of both of these disasters (and of many others besides) discuss

the fall of an agent as the seed for jamming and injury; it would be interesting to return to

the work of chapter 6, raising φ to a threshold that results in no injuries, but then artificially

inducing a seed injury in an effort to understand its effects on the rest of the crowd, and why falls

are so salient in crowd disasters. Lastly, we have suggested (in section 9.1.2) an investigation

of dynamic drive changes in crowds, but investigating the effects of synchronisation of those

changes would be a valuable addition to this future study.

9.2 The Microscopic Human Factors methodology

The studies of force, spatial information discovery and communication and front-to-back commu-

nication have each been generative in their own right, and as we have just seen, have provided

for some interesting discussion in concert. Their larger function in this thesis, however, is as

demonstrations of the MHF methodology. In this section we evaluate the methodology itself, the

use of which we found to have several benefits in the demonstration chapters.

9.2.1 The value of the specification

An important benefit of the methodology was that it required the development of a specification

based on what we know about the crowd phenomenon at issue; it required us to make explicit

our hypotheses about those aspects of the phenomenon that are not well understood. The

2An intuition pump may solidify this view. Given the auditory stimulus present in both cases, if we suppose
that both the Riverfront Coliseum and Bethnal Green crowds were wearing earplugs and did not hear the concert
beginning or the noise of war, it is not difficult to imagine that the drive transition might not have occurred. Given
continuing orderly progress there would be no impetus for a fall, and likely no disaster.
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specification must be centred on crowd behaviour, and this ensured that each demonstration

began with a discussion of crowd behaviour and its mechanisms. Beginning with this discussion is

very important as it places the focus on the mechanisms of real crowd behaviour, and encourages

an abstraction that preserves these behavioural mechanisms. A less-desirable alternative might

begin with an argument for a modelling formalism like particle dynamics, justifying it by an

inappropriate analogy (e.g. that people are like seeds in a hopper) and proceeding to model

ball-bearings instead of people (see sections 1.1.2 and 3.2 for more on this point). The MHF

requirements help us to guard against such a strategy; when we begin by describing people, for

example, it becomes quickly apparent that seeds in a hopper are a poor metaphor for people in

crowds.

9.2.2 The value of the reduction

In our experience using the methodology, the reduction level is the locus of the most important

modelling contribution. The reduction layer makes explicit — separate from any questions of

modelling practicality or implementation formalism — the known or hypothesised essential

aspects of a behaviour or crowd phenomenon. This, in our view, is the primary theoretical

output of a model that exists to explore the mechanisms at work in crowds; it is the source of

the explanatory power in a microscopic simulation. The absence of an explicit reduction in a

microscopic model leaves to the reader the critical task of extracting the authors’ hypotheses

about how the world works at the essential and abstract level consistent with the microscopic

model’s implementation. Leaving to the reader the responsibility to imagine how a real crowd

might be similar to the implementation described is leaving an important step in the validity of

the model undefined; if it is not clear how the implementation relates to the world, then it is

not clear how the results of the implementation do either.

We were surprised that other models (e.g. Burstedde et al., 2001; Helbing et al., 2000b) do

not appear to provide this abstract description of the mechanism at work in crowds, separate

from their implementation and formalism. These models do not make clear what abstractions in

the model are made for the sake of the formalism, and what abstractions are considered to be
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theoretical positions concerning mechanisms in crowds. By contrast, our demonstrations show

this important task is accomplished if the methodology is followed. In each reduction (sections

6.2, 7.2 and 8.2) we outlined the critical processes that, in our view, must be present in order

for the behaviours to happen; these represented our hypotheses of how the world essentially

works. In each of sections 6.9, 7.6 and 8.7 we argued that the implementation was a satisfactory

representation of the reduction, and thus that simulation results demonstrated our essential

rules in action; by comparing the behaviour generated by the rules to the behaviour described

in the specification we showed the reduction was sufficient to underlie the specification. Armed

with essential rules that can underlie a real crowd behaviour, we are then in a position (as

further described in section 4.3.2) to participate in a substantial way with other disciplines in

refining our understanding of the behaviour of real crowds.

When we specify a reduction of the specification, it is natural that interesting factors fall by

the wayside due to the abstraction process. For example, in chapter 8, the richness of cues to

regulate front-to-back communication was dropped in favour of a single force-based mechanism.

We found that the formal statement of the reduction highlighted those interesting pieces of

future work. In a sense, the reduction process identified those parts of the behaviour that were

of most importance and those parts of the behaviour which were not essential but were of

interest, and separated these from the details that were of less interest. This was a benefit to

using the methodology.

9.2.3 Effect on implementation

Because the reduction level must be specified from the point of view of an individual within the

crowd, it supports implementations that are pre-disposed to take the perspective of individuals in

determining actions (like movement decisions). This encourages a focus on situated processing

and the modelling of behaviour that is determined based on information available to an individ-

ual at a specific time. It also guides the selection of an appropriate implementation formalism.

For example, a mathematical model that deals with agents in aggregate is not appropriate to

the individual and situated focus of a microscopic crowd simulation. When crowd phenomena
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are expressed in the language of individual behaviours the non-interchangeability of agents

becomes apparent and aggregate models simply appear infelicitous. This is the reason to argue

for the appropriateness of the formalism as a part of validating the model.

In the case of the demonstrations of chapters 6–8, this important function of the methodology

guided us in restating the floor field model as a multi-agent system. This provided a highly

expressive implementation formalism that was well-suited to modelling crowd behaviour from

the perspective of the individual. The appropriateness of the formalism was evident in all three

demonstrations as the rules provided by the reduction were effectively added right at the heart

of the floor field model. For example, in chapter 7, our changes to the model were tightly

integrated with the core equation of the model by aligning the implementation of the reduction

with the structures of the existing model.

It should be noted that in our demonstrations we were able to build on the results of previous

chapters. In chapter 7 we were able to build on the results of chapter 6. In chapter 8 we were

able to build on the results of chapter 7. This ability to use the methodology in a serial manner

to progressively extend a model with multiple human factors is not a guaranteed property of all

models developed using the methodology. In other words, the methodology does not guarantee

that resultant models will be suitable for further expansion, even if the goal is to add multiple

behaviours that are known to co-exist in crowds. This is due to the principles of multiple

realisability discussed in section 4.3.2. Thus, each time the methodology is used to generate an

additional behaviour, the appropriateness of the base formalism must be re-assessed. In other

words, it is important to determine, each time a new behaviour is added to a microscopic model,

whether that model is most appropriate implementation formalism — even if that model has

itself been created according to the principles of the methodology.

9.3 Sime’s concerns

The motivation for the Microscopic Human Factors methodology was ultimately to take account

of Sime’s concerns within the domain of microscopic modelling. Let us repeat Sime’s quotation
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from page 4 from which we began the work of this thesis. Sime was motivated by a lack of

balance in research of crowd behaviour, saying:

Psychology and engineering are characteristically mutually exclusive in their focus
on the perspective of crowd members who think and behave (psychology) or on
static and dynamic objects (engineering) . . . The history of psychology, and indeed
crowd psychology, is one in which the physical environment in which behaviour
takes place has been ignored. While this might justifiably frustrate engineers, it
is equally the case that social scientists are bemused by the lack of attention in
engineering to the psychological and social aspects of crowd safety. . . (1995)

We have developed the Microscopic Human Factors methodology for the purpose of introduc-

ing human behaviour into microscopic crowd modelling, which often has a statistical-mechanics

focus (corresponding to engineering in Sime’s comment). As just described, the methodology is

specifically intended to develop human-focused models (corresponding to psychology in Sime’s

comment), by starting with a description of how a behaviour works in real crowds. The cogni-

tive focus continues as the methodology requires a complete description of the behaviour from

the perspective of an individual. By requiring a close integration with a microscopic model,

the methodology provides for the introduction of human factors at the heart of a simulation.

This yields a simulation that is naturally situated and takes account of Sime’s concerns; by

maintaining the microscopic focus on spatial realism while introducing human behaviour, the

methodology helps to unify human and engineering approaches to crowd modelling.

As discussed in section 1.1.2, panic is a problematic concept in crowd dynamics. The level

of the specification in the methodology requires a clear statement of the researcher’s concept of

the crowd behaviour. This specification must not contain elements of panic, a responsibility that

must be undertaken by modellers. By focusing on individuals rather than on collective structures

at the reduction level, however, models of panic are also discouraged by the methodology.

Each of chapters 6–8, the demonstrations of the methodology, also provide a demonstration

of Sime’s concerns being addressed. In chapter 6, for example, we introduced human behaviour

into the model in the shape of voluntary pushing behaviours; these behaviours did not emerge

mechanistically as a general consequence of masses of people, rather they were rooted in a

hypothesis about individual behaviour and frustrated movement. In chapter 7 we introduced
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internal representations of the world, physical discovery of new spatial facts and communication

of information; this chapter implemented Sime’s suggestion that people should be viewed as

moving through an information system as well as a physical environment. In chapter 8 we

introduced communication behaviours in which people communicated on an individual basis to

reduce dangerous crowd forces, resulting in global reduction in injury. In all cases, using the

methodology, we were able to capture essentials of the human behaviour, and introduce it into

the heart of the microscopic model.

Each of the demonstrations has: shown the value of the methodology in generating new

insights into crowd behaviour, demonstrated the practicality of the model for generating mi-

croscopic representations of human behaviour, shown how to clarify the intellectual position

taken by a model with respect to these behaviours, and improved the model with respect to

Sime’s concerns. We conclude that the methodology is a practical and useful way to improve

microscopic crowd models.



Chapter 10

Conclusions and future work

Jonathan Sime expressed his concerns that behavioural and physical research into crowd dy-

namics were not adequately integrated. Although years have passed since his statements, and

models have become more capable, his core concerns have not been well addressed. In this

thesis, we have presented a methodology for introducing behavioural factors into microscopic

models of crowds. The Microscopic Human Factors methodology helps to identify a human be-

haviour, to reduce it to its essential core, and to implement it at the heart of a microscopic model.

We have presented three demonstrations of this process using the methodology, and derived

conclusions and suggestions for future work from each demonstration. In general discussion we

have combined results from the demonstrations with the literature to support conclusions about

crowd safety, before drawing general conclusions about the usefulness of the methodology and

its applicability to Sime’s concerns.

In this chapter we present the conclusions obtained from the preceding work, we summarise

the contributions made by this thesis, and we identify the future work it suggests. Finally, we

shall close with a few concluding remarks.

10.1 Conclusions

The following conclusions have been generated by the previous chapters of this thesis:

189
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1. Current microscopic models do not take account of Jonathan Sime’s concerns relating

to the integration of human behaviour and physical approaches to understanding crowd

dynamics.

2. Using our Microscopic Human Factors methodology it is possible and practical to build mi-

croscopic models that can take account of Sime’s concerns, generate interesting qualitative

discussion and useful conclusions.

3. The floor field model (Burstedde et al., 2001; Kirchner & Schadschneider, 2002), refor-

mulated as a multi-agent system, is an excellent match for the Microscopic Human Factor

methodology and was easily fused with microscopic human behaviour simulations.

4. Small numbers of agents at the rear of crowds can influence agents at the front by trigger-

ing and focusing pushing and leaning forces, creating injuries and jamming exits.

5. Smooth reductions in numbers of injuries belie complexity in modelled exit rates due to a

variety of protective injury effects.

6. As a consequence of conclusions 4 and 5, it is essential to model force in crowd models.

7. Our results support the view that medium drive produces the best exit rates in most cases.

This accords with Proulx and Sime’s work regarding the desirability of medium drive

during fire egress (1991).

8. Differing agent knowledge produces a heterogeneous crowd, and is effectively engendered

through local information discovery.

9. In a heterogeneous crowd, situatedness remains important, producing differences in

behaviour that are as great for agents with similar knowledge as they are for agents with

different information.

10. Modelling crowd heterogeneity through information discovery and communication in-

creases the range of scenarios that can be modelled microscopically, including complex

scenarios involving beliefs that change with time.
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11. Heterogeneous movement at high drive can create obstructive barrier formations reminis-

cent of the one seen at the Lenin Stadium disaster.

12. Communication of spatial information and consequent reduction of differences between

groups has the potential to be a powerful force mediator and enhancer of crowd safety.

13. Front-to-back communication can in principle reduce damaging forces, as demonstrated

in a laboratory scenario, in our reconstructed Riverfront Coliseum disaster and in barrier

formations.

14. Our results suggest that injuries may have occurred at Riverfront Coliseum when two

perpendicular forces produced a hot spot of pressure. This differs from Fruin’s suggestion

(1993) that injury-causing forces were opposed to each other.

10.2 Contributions

The work in this thesis makes the following original contributions to knowledge:

1. We have identified microscopic behaviour simulations as a way to take account of Sime’s

concerns (that psychology and engineering are not adequately integrated in the study of

crowd dynamics) in the domain of microscopic crowd modelling.

2. We have created the Microscopic Human Factors methodology to enable microscopic

modellers to take account of Sime’s concerns, integrating human behaviour and physical

realism without losing the benefits of current microscopic models.

3. We have established a method to argue for the validity of models built according to the

methodology, its benefits and its limitations.

4. We have contributed a force simulation to the floor field model (Burstedde et al., 2001)

and its modelling community, allowing the modelling of injuries, crowd safety and force’s

effects on movement.
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5. We have contributed a simulation of spatial information discovery and communication

to the floor field model and its modelling community, providing for richer scenarios and

crowd heterogeneity through creation of groups formed by shared mental content, as well

as situatedness.

6. We have provided a conception of — and proposed a simple mechanism for — successful

front-to-back communication.

7. We have contributed a simulation of front-to-back communication to the floor field model

and its modelling community.

8. We have demonstrated that successful front-to-back communication can manage forces

and reduce injuries in a laboratory model, in a reconstruction of the Riverfront Coliseum

disaster and in a scenario similar to the barrier formation that caused deaths at Lenin

Stadium.

10.3 Future work

The work of chapters 6–9 has raised many interesting points for future work. This section

summarises them briefly, and the reader is referred to the full discussion for details.

1. We have suggested the that floor field model, when augmented by force, could benefit

from diagonal movement in order to resolve conflicts at high agent drive.

2. Enhancing the force simulation with different classes of injury could improve the model.

In real crowds injuries can involve slower movement (rather than no movement) and can

present differing amounts of obstruction to other agents.

3. One question not answered in the literature at present concerns why people initiate

voluntary pushing in the first place, a more nuanced simulation of the trigger for pushing

would be of great value in understanding why some crowd situations are more physical

than others.
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4. We have suggested that injuries act as force breaks within the crowd. It would be better

to install physical force barriers than to injure people. Accordingly, studying the most

effective barrier configurations, and the effectiveness of fixed configurations to regulate

force patterns generated by different densities and drive levels would be of great interest.

5. We have noted the presence of falls and seed injuries in the explanations of the Bethnal

Green and Riverfront Coliseum disasters. It would be interesting to investigate this by

creating seed injuries and evaluating their effects on other agents.

6. We have explored communication of spatial information under idealised circumstances in

which agents communicate only when blocked in movement. There are many different

reasons why agents might choose to communicate (e.g. altruism, leadership) and it would

be interesting to experiment with these as well. In addition, local or global overhead

announcements could further alter the pattern of behaviour.

7. In spatial communication introduction of probabilities for communicating and believing

incoming communication could allow determination of the degree of compliance required

to see the benefits of communication. This would allow determination of whether these

benefits degrade gracefully or have a threshold below which they are no longer seen.

8. The ICE approach to building safety (Gwynne & Boswell, in press; Gwynne & Kuligowski,

in press) discusses the importance of understanding what people learn about structures

during normal usage in order to understand egress behaviours. An abstract simulation of

this phenomenon could be implemented using the work of chapter 7 as a base.

9. Front-to-back communication has much in common with spatial communication, and

would benefit from similar future work. In the case of front-to-back communication adding

other cues to initiate the behaviour would be of interest, as would be the regulation of

initiation, honouring and retransmission through probabilities, interaction with local and

global overhead announcements and looking at the effects of pockets of successful and

unsuccessful communication.
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10. We have raised the question of training crowds to develop effective front-to-back com-

munication, and suggested this could be of particular interest in large, slow situations

that might also provide an opportunity for instruction. Determining the feasibility and

practicality of this approach is left to future work.

11. Issues of timing in front-to-back communication seem extremely relevant to its utility in

limiting injuries. This suggests separating the time progression of force, communication

and movement (which currently are synchronised) to determine any timing related effects.

12. We have noted the potential for transitions from low→ high drive to be a better predictor

of injury than simple failure of front-to-back communication. This suggestion could be

examined by allowing dynamic variation of the floor field model’s kS and kD parameters

with time or discovery.

13. Building on suggestions 11 and 12, we have noted that two of our disaster scenarios

featured environmental cues that could have synchronised transitions between low and

high drive. It would be interesting to review a number of crowd disasters looking for

this type of synchronised transition. This also suggests adding a study of synchronised

transitions to the work of suggestion 12.

14. We have suggested that developing models of pre-movement time (a daunting but high-

impact task) be considered a priority. It remains a key area of Sime’s concerns, and we

are not aware of crowd models that have successfully addressed it.

10.4 Closing remarks

In section 4.1 we presented our research objective:

Research objective: To develop a methodology to integrate relevant human be-

haviours with physical factors at the heart of microscopic crowd models for the purpose

of improving relevance to people and studying emergent crowd-level effects.
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The points in this chapter give credence to our success in meeting the objective. We have

developed a novel methodology for integrating microscopic human factors with the existing

physical simulation in microscopic models. We have provided three demonstrations of this

methodology in use in the floor field model; each has been novel and generative in its own

right in results, discussion and future work. We have argued that the methodology supports the

addition of human behaviours to microscopic models, improving the relevance of these models

to people. We have improved the models according to Sime’s concerns, and also by increasing

the complexity of the situations they can model.

Merton long ago described his attraction to what he called middle-range theories in social

science (1949), a view later distilled as a challenge “neither to produce big, broad and general

theories of everything, nor to spend time in empirical accounts per se, but to formalise, test,

use and extend theoretical models able to shed light on the causal mechanisms that are behind

the complexity of empirical phenomena” (Boero & Squazzoni, 2005). This challenge accords

perfectly with the task of microscopic models of crowd dynamics. The fact that it originated

with a social scientist reminds us that as modellers — despite the physical factors inherent in

all crowd situations (safe or dangerous) — the complexity of empirical phenomena in crowd

dynamics must be understood in the context of the human behaviour driving the individuals

who make up the crowd. In other words: crowds are made of people.
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