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Abstract: Logical characterizations of the common prior assumption (CPA) are 
investigated. Two approaches are considered. The first is called frame distin- 
guishability, and is similar in spirit to the approaches considered in the economics 
literature. Results similar to those obtained in the economics literature are proved 
here as well, namely, that we can distinguish finite spaces that satisfy the CPA 
from those that do not in terms of disagreements in expectation. However, it is 
shown that, for the language used here, no formulas can distinguish infinite spaces 
satisfying the CPA from those that do not. The second approach considered is 
that of finding a sound and complete axiomatization. Such an axiomatization is 
provided; again, the key axiom involves disagreements in expectation. The same 
axiom system is shown to be sound and complete both in the finite and the infinite 
case. Thus, the two approaches to characterizing the CPA behave quite differently 
in the case of infinite spaces. 

1 Introduction 

The common prior assumption (CPA) is one that, up until quite recently, was almost an article 
of faith among economists. This assumption says that differences in beliefs among agents can 
be completely explained by differences in information. Essentially, the picture is that agents 
start out with identical prior beliefs (the common prior) and then condition on the information 
that they later receive. If their later beliefs differ, it must thus be due to the fact that they have 
received different information. 

*The work was supported in part by NSF under grant IRI-96-25901 and by the Air Force Office of Scientific 
Research under grant F49620-96-1-0323. 
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The CPA has played a prominent role in economic theory. Harsanyi [ 1968] showed that a 
game of incomplete information could be reduced to a standard game of imperfect information 
information with an initial move by nature iffindividuals could be viewed as having a common 
prior over some state space. Aumann [1976] showed that individuals with a common prior 
could not "agree to disagree"; that is, if  their posteriors were derived from a common prior 
and they had common knowledge of their posterior probabilities of a particular event, these 
posteriors would have to be the same. 

The CPA has come under a great deal of scrutiny recently. (See [Morris 1995] for an 
overview.) In an effort to try to understand the implications of the CPA better, there have been a 
number of attempts to characterize the CPA. Of most relevance here are the results of Bonanno 
and Nehring [1996], Feinberg [1995, 1996], Morris [1994], and Samet [pear], who all showed 
that, in finite spaces, the CPA could be characterized by a disagreement in expectations, in a 
sense explained below. Feinberg [1996] extended this result to infinite spaces that satisfied a 
certain compactness condition, and also showed that this compactness condition was necessary. 

This paper continues these efforts. I characterize the CPA using traditional tools from modal 
logic, and compare these characterizations to those used in the economics literature. In the 
process, I highlight the role of the language used in getting a characterization. Feinberg [ 1996] 
showed how to characterize the CPA in syntactic terms, essentially using a logic with operators 
for knowledge and probability. I use a much richer language here, one introduced in [Fagin 
and Halpern 1994], which has operators for knowledge, common knowledge, and probability. 
Feinberg's language is weaker than that used here in two significant respects. The first is that it 
does not include an operator for common knowledge. To get around this, his characterization 
involves infinite sets of formulas. The second is that the operators in his language do not allow 
us to express expectation. In particular, this means that disagreement in expectation cannot be 
expressed. Feinberg gets around this by an ingenious construction that involves adding coin 
tosses to the description of the world, in order to construct a more complex model. In this 
model, disagreement in expectation is converted to disagreement between two agents about the 
probability of an event, and this fact can be expressed in Feinberg's language. By using a richer 
language, the need for this construction is completely obviated. 

However, characterizing the CPA involves more than just language. It depends on what 
counts as a characterization. I consider two quite different characterizations here. One is called 
frame distinguishability, and is very similar in spirit to the types of characterization considered 
in the economics literature. Not surprisingly, the results I obtain for frame distinguishability 
are quite similar to those obtained in the economics literature (and much the same techniques 
are used). In particular, I show that finite frames (essentially, finite spaces) that satisfy the 
CPA can be distinguished from those that do not in terms of disagreements in expectation. 
However, there are no formulas in the language considered here that can distinguish infinite 
spaces satisfying the CPA from those that do not. 

The second type of characterization I consider is that of finding a sound and complete 
axiomatization. I provide such an axiomatization; again, the key axiom involves disagreements 
in expectation. The same axiom system is shown to be sound and complete both in the finite 
and the infinite case. Thus, the distinction between finite and infinite spaces vanishes when we 
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consider axiomatizations. Roughly speaking, this can be understood as saying that the language 
is too weak to distinguish finite from infinite spaces (despite being much stronger than that 
considered by Feinberg). 

The rest of  this paper is organized as follows. In Section 2, I define the language considered 
and its semantics. In Section 3, I consider the two types of  characterizations. In addition to 
considering what happens with common knowledge in the language, I also show that without 
common knowledge, there are no new consequences of  the CPA. This contrasts with a result of  
Lipman [ 1997], who showed that there are some (albeit weak) consequences of  the CPA, even 
without common knowledge in the language. The differences in our results are attributable 
to a small but significant difference in our definitions of  the CPA in the case when there are 
information sets with prior probability 0; see Section 3 for details. I conclude in Section 4 with 
some discussion of  these results. For interested readers, the axiom systems mentioned in the 
paper are described in the appendix. For reasons of  space, proofs have been omitted. 

2 Syntax and Semantics 

I start with a brief review of  the syntax and semantics of  the language for reasoning about 
knowledge, common knowledge, and probability defined in [Fagin and Halpem 1994]. We 
start with a set • of  primitive propositions (think of these as representing basic events such as 
"agent 1 went left on his last move") and n agents. We take ~E~ 'c'pr to be the least set of  formulas 
that includes • and is closed under the following construction rules: If ~, ~', ~ l , .  •., ~m are 
formulas in [,K,C,pr then so are ~qa, qo A ~', Kip,  i = 1 , . . .  n, (which is read "agent i 
knows qo"), Cqo ("qo is common knowledge"), and alpri(~al) + ""  + ampri(qom) > b, where 
a l , . . . ,  am, b are rational numbers, (pri (qo) is read "the probability of  qa according to agent i"). 
Let £:K,pr consist of  all the formulas in Z;~ K,c,p" that do not mention the C operator. 

As usual, qo V qo' and qa ~ qo' are abbreviations for ~(~qo A ~qo') and ~ ;  V qo', respectively. 
In addition, E l ~  ("everyone knows qo") is an abbreviation for Klqa A . . .  h~qo and Em+l~ is 
an abbreviation for E 1Emqo ("everyone knows that everyone k n o w s . . ,  that everyone knows--- 
m + 1 times qa"), for m _> 1. Many other abbreviations will be used for reasoning about 
probability without further comment, such as pri(qo) < b for -~(pri(~p) > b), pri(~p) > b for 
-pr~(~) < -b,  and pr~(~) = b for pr~(~) < b A pr~(~p) > b. Note that by using/-probability 
formulas, we can describe agent i 's beliefs about the expected value of  a random variable, 
provided that the worlds in which the random variable takes on a particular value can be 
characterized by formulas. For example, suppose that agent 1 wins $2 if a coin lands heads 
and loses $3 if  it lands tails. Then the formula 2prl (heads) - 3prl (tails) > 1 says that agent 1 
believes his expected winnings are at least $1. 

To assign truth values to formulas in --nfK'C'w, we use a (Kripke)frame (for knowledge and 
probability for n agents). This is a tuple F = (W, ;El, • • •,/En, PT~l, • • •, PT~n), where W is a 
set of  possible worlds or s tates , /El , . . . ,  ~ are equivalence relations on W, and 7v7~1,..., P T ~  
are probability assignments; "PT~ associates with each world w in W a probability space 
T"R.i(w) = (W~o,, Xw,, Vr~,,i). Intuitively, ~i(w) = {w' • (w, w') E /Ei} is the set of  worlds 
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that agent i considers possible in world w and P'Ri(w) is the probability space that agent i uses 
at world w. PRi  must satisfy the following three assumptions. 

A1. Ww,.i = E~(w): that is, the sample space at world w consists of  the worlds that agent i 
considers possible at w. 

A2. I fw '  E K:i(w), then 7)'Ri(w) = P'Ri(w'): at all worlds that agent i considers possible, 
he uses the same probability space. 

A3. A'w,i, the set of  measurable sets, includes El(w) N Ej(w ~) for each agent j and world 
w' E ~ ( w ) .  Intuitively, each agent's information partitions are measurable. 

Apart from minor notational differences, a Kripke frame is the standard model used in the 
economics literature to capture knowledge and probability (see, for example, [Feinberg 1996]); 
K;~(w) is usually called agent i 's information set at world w. In the economics literature, an 
agent's knowledge is usually characterized by a partition, but this, of  course, is equivalent to 
using an equivalence relation. 1 

A frame does not tell us how to connect the language to the worlds. For example, it does 
not tell us under what circumstances a primitive proposition p is true. To do that, we need 
an interpretation, that is, a function that associates with each primitive proposition an event, 
namely, the set of  worlds where it is true. Formally, an interpretation 7r associates with each 
world w a truth assignment to the primitive propositions in ~;  i.e., 7r(w)(p) E { t rue ,  false} 
for each primitive proposition p E • and each world w E W. A (Kripke) structure (for 
knowledge and probability for n agents) is a tuple M = (W, E l , . . . ,  En, "PTgl,. •. ,  T'Tgn, 7r), 
where F = (W, E l , . . . ,  K;n, 3o7¢1,..., T'TCn) is a frame and 7r is an interpretation, with the 
restriction that 

A4. Ei(w) C3 ~P]M E Xw,i for each primitive proposition p E ¢ ,  where [P]M = {w : 
zr(w)(p) = t r u e }  is the event that p is true in structure M. Intuitively, this makes [PlM 
a measurable event at every world. 

We say that the structure M is based on the frame F.  Note that there are many structures based 
on a frame F,  one for each choice of  interpretation. 

We can now associate an event with each formula in Z;~ K,c,p~ in a Kripke structure. We write 
(M, w) ~ ¢p if the formula qo is true at world w in Kripke structure M; generalizing the earlier 
notation, we denote by ICPlM = {w : (M, w) ~ cp} the event that ~ is true in structure M. We 
proceed by induction on the structure of  ~p, assuming that we have given the definition for all 
subformulas ¢p' of  ¢p and that Icp'lM n K:i(w) E Xw,i; that is, the event corresponding to each 
formula must be measurable. 

(M, w) ~ p (for p E ~)  iff 7r(w)(p) = t r u e  

1Bonanno and Nehring [ 1996] assume only that the relation is serial, Euclidean, transitive, which is a weaker 
assumption than it being an equivalence relation, because they want to model belief rather than knowledge. 
Otherwise, their formalism is the same. 
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(M,w) ~ ~ A ~' i f f (M,w)  ~ ~ and (M, w) ~ ~' 

(M,w) ~ ~p  i f f (M,w)  ~ ~p 

(M,w) ~ K ~ i f f ( M , w ' )  ~ ~ for all w' E K:~(w) 

(M, w) ~ C~p iff (M, w) ~ Ekw for all k _> 1 

(M, w) ~ alpri(qOl) + ' "  + ampri(~om) > b 
i fa l  Prw,/([qOl]M n Ww,i) + . . .  + am Prw,i([qgm]M f') Ww,i) > b. 

For future reference, it is useful to recall a well-known alternative characterization of 
common knowledge. We say that world w' is reachable from w if there exist worlds w0, • • •, wm 
such that w = wo, w' =wm and for all k < m, there exists an agent j such that Wk+l E /Cj (Wk). 
Let C(w) consist of all the worlds reachable from w; C(w) is called the component of w. The 
reachability relation is clearly an equivalence relation; thus, C partitions the set W of worlds 
into components. A subset W' C_ W is a component of W if W' = C(w) for some w E W. 

The following lemma is well known (cf. [Fagin, Halpern, Moses, and Vardi 1995, Lemma 
2.2.1]). 

Lemma 2.1: (M, w) ~ Cqo iff(M, w') ~ qa for all w' E C(w). 

With this background, we can formalize the CPA. It is simply another constraint on proba- 
bility assignments. 

CE There exists a probability space (W, A'w, Prw) such that Prw(W') > 0 for all components 
W' of W and for all i, w, if  7:rR~(w) = (Hi(w), Xw,~, Prw,~), then X'w,i C ,¥w and, if  
Prw(1Ci(w)) > O, then Prw,i(U) = Prw(UI1Ci(w)) for all U E ,¥w,i. (There are no 
constraints on Prw,i if  Prw (Ei (w)) = 0.) 

This formalization of the CP is slightly different from the others in the literature. Bonanno 
and Nehring [1996], Feinberg [1996], and Samet [pear] do not require the condition that the 
prior gives each component positive probability. However, this condition is necessary for 
Aumann's theorem to hold; if the common prior can give probability 0 to a component, then 
we can have two agents with a common prior that have common knowledge (in a component 
with prior probability 0) that they assign different probabilities to a particular event. Aumann 
[ 1976, 1987] starts with the prior and assumes that the posteriors are obtained from the prior by 
conditioning on the information of the agents; in our language this means that Prw,i is obtained 
from Prw by conditioning on/Ci(w). In [Aumann 1976], Aumann explicitly assumes that 
Prw(1Ci(w)) # 0 for all agents i and worlds w. (This assumption is also implicitly made in 
[Aumann 1987].) While the issue of what happens when the prior gives an information set 
zero probability is a relatively minor technical nuisance, it turns out to play an important role 
when considering the impact of the CPA. As mentioned in the Introduction, Lipman [1997] 
shows that there are still some consequences of the CPA even without common knowledge 
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in the language. However, as shown here, the assumption that Prw(/Ci(w)) --fi 0 for all i, w 
is crucial for Lipman's results. With the weaker assumption that only components need get 
positive probability, there are in fact no consequences of  the CPA without common knowledge 
in the language. This is discussed in more detail in Section 3. 

Let .Tn consist of  all frames for n agents. Let .T~ '~ consist of  all frames for n agents where 
the set of  worlds is finite and the probability spaces at each point are such that every set is 
measurable. Let .T'~ P (resp., .T~ cP,fi") consist of  all frames in .T'~ (resp., .T~ ~) that satisfy CP. I 
use M ~ ,  ~ cP M c'e,fi~ .AA~ , .A/I n , and to denote the corresponding sets of  structures. 2 

A formula ~ is valid (resp., satisfied) in a Kripke structure M = (W, . . . )  if for all (resp., 
some) w E W, we have (M, w) ~ ~. A formula is valid (resp., satisfied) in frame F if  it 
is valid in every Kripke structure (resp., satisfied in some Kripke structure) based on F.  A 
formula ~p is valid in a set .M of  structures (resp., set .T of  frames) if  it is valid in every structure 
M E .M (resp., every frame F E .T). It is easy to check that a formula is valid in a set .T" of  
frames iff it is valid in the set .M of  all structures based on the frames in .T. 

3 Characterizing the CPA 

In this section, I consider two approaches to characterizing the CPA. The first is in the spirit 
of  the approaches taken in the economics literature (although it has analogues in the modal 
logic literature too), while the second involves finding a sound and complete axiomatization. 
In Section 4, I discuss in more detail what the definitions tell us, in light of  the results. 

3.1 Frame Distinguishability 

Frame distinguishability essentially asks whether there is a test (expressed as a set of  formulas) 
that allows us to distinguish the frames satisfying a certain property from ones that do not. 

Definition 3.1: A set .,4 of  formulas distinguishes a collection .T of  frames from another 
collection .T' if (a) every formula in A is valid in .T, (b) if F E .T', then some formula in .,4 is 
not valid in F.  I 

Typically the set ,.4 of  formulas in Definition 3.1 consists of  all instances of  some axiom and the 
set .T is the set of  frames satisfying a certain property (like the CPA). Note that this definition 
is given in terms of  frames, not structures; as I show in the fiall paper, this is necessary for the 
technical results to hold. 

My results on frame distinguishability parallel those of  Feinberg [ 1996]: we cannot distin- 
guish frames that satisfy the CPA from those that do not, but we can distinguish finite frames 
satisfying the CPA from those that do not. To do this, we might hope to use the axiom char- 
acterizing Aumann's "no disagreement" theorem, - . C ( p r i ( q o )  = a A p r j ( q o )  = b) for a :fi b. 

ZTeclmieally, these are not sets but classes; they are too large to be sets. I ignore the distinction here. 
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While this axiom in valid in 9r'~ cP (and hence .TnCP'fin), it is not strong enough to distinguish 
5r~ cP,~ from ~ - .T'~ cP,/~'~. As Feinberg [1996] points out, there are frames in .T~ n - .T~ cP,/~ 
that satisfy every instance of this axiom, simply because C(pri(qo) = a) does not hold for any 
choice of  a. It follows that we need something stronger than disagreement in probability to 
characterize the CPA. 

Consider the following axiom. 

CP2. If ~ l , - . . ,  (Pm are mutually exclusive formulas (that is, if ~(~i A qoj) is an instance of  a 
propositional tautology for i # j) ,  then 

~C(a lpr l (~ l )  + . . .  + amprl(~pm) > 0 A alpr2(~pl) + ' . .  + ampr2(~m) < 0). 

Notice that CP2 is really an axiom scheme; that is, it represents a set of  formulas, obtained by 
considering all instantiations of  a l , . . . ,  am and ~1,. •., ~m. CP2 is valid in a structure M if it 
is not common knowledge that agents 1 and 2 disagree about the expected value of  the random 
variable which takes value aj on I~jlM, J = 1 , . . . ,  m. Intuitively, CP2 says that it cannot 
be common knowledge that agents 1 and 2 have a disagreement in expectation. It is easy to 
see that disagreements i n  expectation cannot exist if there is a common prior; Feinberg [ 1995, 
1996] and Samet [pear] showed that the converse also holds in finite spaces. 3 The following 
theorem just recasts their results in this framework; its proof shows why we need to use frames 
rather than structures in Definition 3.1. 

Theorem 3.2:CP2 distinguishes .T2cP$n from ~2 ~ - .T2 ce$". 

As Feinberg and Samet show, we can extend this characterization to n > 2 agents. Their 
characterization leads to an axiom CPn which allows us to distinguish .T~ cP,/~'~ from .T'ff ~ - 
9r'~ ce'/~'~, for all n > 0. The details can be found in the full paper. 

What happens if  the set of  worlds is not finite? Feinberg shows by example that we can find 
structures for which there is no common prior, and yet there is no disagreement in expectation 
(at least, not by bounded random variables). His counterexample can also be used to show that 
CP2 does not distinguish 9r'2 cP from .T2 - 9r2 cP. But, in fact, an even stronger result holds: 

r K,C,P~ that distinguishes .T~ P Theorem 3.3: For all k >_ 2, there is no set .Ak o f  formulas in "-.k 
from .T'k -- .Tk cP. 

3.2 A Sound and Complete Axiomatization of the CPA 

The more standard approach to characterizing a notion like the CPA in the logic community 
is via a sound and complete axiomatization. An axiom system A X  consists of  a collection of  

3 Essentially the same result is proved by Bonanno and Nehring [ 1996], but they were dealing with belief raather 
than knowledge, so rather than being equivalences, their/Ci relations were serial, Euclidean, and transitive. 
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axioms and inference rules. A proof in AX consists of  a sequence of  formulas, each of  which 
is either an axiom in AX or follows by an application of  an inference rule. 

An axiom system AX is said to be sound for a language £ with respect to a set .M of  
structures if  every formula in Z2 provable in AX is valid with respect to every structure in .M. 
The system AX is complete for £ with respect to .A4 if  every formula in £ that is valid with 
respect to every structure in .A4 is provable in AX. We think of  AX as characterizing the class 
.A4 if it provides a sound and complete axiomatization of that class. We can similarly define 
the notion of  a sound and complete axiomatization with respect to a set of  frames. Invariably, 
an axiom system is sound and complete with respect to a set of  structures iff it is sound and 
complete with respect to the corresponding set of  frames, since a formula is valid with respect 
to a frame iff it is valid with respect to all the structures based on it. 

In [Fagin and Halpern 1994], a complete axiomatization is provided for the language £~,pr 
with respect .A4n. This axiom system, denoted "--nAYK'Vr, is described in the appendix. By 
adding a (well known) axiom and rule for reasoning about common knowledge (also given in 

A~K,C,P r the appendix), we get the system ____n . 

Theorem 3.4: AX~ K'C'p~ is a sound and complete axiomatization for £~',C,p~ with respect to 
both .A4~ and .A4~ n (and hence also with respect to both .Tn and .TEn). 

A X ~  'c'pr is not a sound and complete axiomatization for £~,C,pr with respect to .M~ cP and 
.A4 ce,/~'~ If we restrict to structures that satisfy the CPA, we get new valid formulas. Indeed, as 

n 

we have already seen, every instance of CPn is valid in .A4~ cP (and hence --hA4 cP,fi,~,. We might 
A x  K'c'w this would give us a sound and complete axiomatization, hope that if  we add CPn to - - - n  , 

at least for AA ce,f ,  Unfortunately, this is not the case. 

To understand why, some background is helpful. Samet [pear] shows that, given a frame, 
the set of  possible priors for agent i (i.e., those that can generate the posteriors defined by 
Prw,0 is closed and convex. If  two agents do not have common prior, the corresponding sets 
of  possible priors must be disjoint. He then makes use of  a standard result of  convex analysis 
[Rockafellar 1972] to conclude that these sets can be strictly separated by a hyperplane. The 
separating hyperplane gives the coefficients al , .  • . ,  am in CP2.  That is, strict separation by a 
hyperplane amounts to a disagreement in expectation. 

Unfortunately, if  we consider the set of  priors compatible with a given formula, it is no 
longer necessarily a closed set, so Samet's argument does not quite work. For example, let 
~1, qO2, and cp3 be the three mutually exclusive formulas p A q, p A -~q, and ~p, respectively. 
Let Zbl be (prl(qpl) > prl(¢p2)) V ((prl(~l) >_ prl(~2)) A (prl(qo3) > 1/2)) and let ~b2 be 
(pr2(¢pl) < pr2(~2)) V ((pr2(~ol) < pr2(~2)) A (pr2(¢p3) _< 1/2)). 4 Let X i consist of  all 
prior probability distributions for agent i that satisfy ~bi, i = 1,2. Then X 1 = {(xl, x2, x3) " 
xl > x2 orx l  = x2,x3 > 1/2} (where xi is the probability ofcpi, i = 1 , 2 , 3 ) a n d  X 2 = 
{(Xl, x2, x3) • xl < x2 or xl = x2, x3 < 1/2}. X 1 and X 2 are easily seen to be disjoint. Thus, 
there cannot be a common prior. However, although X1 and X2 are convex, they are not closed; 

4This example was suggested by Dov Samet. 
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it is easy to show that they cannot be strictly separated by a hyperplane, and we do not have 
disagreement in expectation in the spirit of  CP2. As a consequence, we get: 

Theorem 3.5: The formula " ~ C ( ¢  1 /~ ¢ 2 )  is valid in .M2 cP, but is notprovable from AX2 K'c'pr + 
CP2. 

It follows from Theorem 3.5 that, i f  we are to obtain a completeness result, even in the case 
of  two agents, we need something stronger than CP2. The key insight comes from examining the 
sets X 1 and X 2 in this counterexample again. For all (Xl, x2, x3) E X 1 and (Yl, Y2, Y3) E X z, 
we have 

X 1 - -  X 2 > 0 > Yl - -  Y2 a n d  xl - x2  ~- Yl - -  Y2 ~ (X3 - -  Xl  - -  X2) > 0 ~ (Y3 - -  Yl - -  Y2)- 

As is shown in the flail paper, this example generalizes. Any two disjoint convex (but not 
necessarily closed) sets can be separated in expectation in this more general sense. 

This observation suggests the following axiom in the case of  two agents. 

CP~. If~pl,. • •, ~Pm are mutually exclusive formulas and i* E {1,2}, then 

Ejm=l aljPrl (qoj) _> 0 A Ejm__l aljpr2(~j) _< 0 A 
((E~=l aljprl(~j)  = 0 A Ejm__l aljpr2(~j) = O) 

(~jm= l a(h-1)jprl(~j) _> 0 A ~jm=l a(h-l)jpr2(~j) _< 0 A 
( ( ~ = 1  a(h-l)jprl (qaj) = 0 A ~jm=l a(h-1)jpr2(~Pj) = O) 

(E~n=i ahjpre(g)j) > 0 A Ejm=l ahjpr2-i.(qoj) _< 0) ) ) . . . ) )  

It is easy to see that the formula ~ C ( ¢ l  A ¢ 2 )  in Theorem 3.5 follows from CP~. 

Just as CP2 generalizes to CPn with n agents, we can generalize CP~ to CP~ (see the 
appendix for a description of CP~). Let AX~ cP consist of  all the axioms and rules of  A X ~  'c'pr 
together with CP ' .  

Theorem 3.6: AX~ cP is a sound and complete axiomatization for  £K,c,v,, with respect to both 
.A4~ cP and .A4~ cP~n (and hence also with respect to both .T~ cp and 7='_ cP#). 

It may seem somewhat surprising that there is no difference between infinite structure and 
finite structures in Theorem 3.6. The contrast with Theorems 3.2 and 3.3 is striking; they show 
that there is a big distinction between finite and infinite frames when we try to characterize 
the CPA in terms of  frame distinguishability. The key point is that, although this language is 
quite expressive in some ways, it is not expressive enough to distinguish finite structures from 
infinite ones. In fact, standard techniques of  modal logic can be used to show that i f a  formula 
is satisfiable at all, it is satisfied in a finite structure. 
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3.3 Restricting the Language to L~  ,~ 

What happens if we drop the common knowledge operator from the language? As I mentioned 
earlier, it is shown in [Fagin and Halpern 1994] that AX~ 'p" provides a sound and complete 
axiomatization for the language £~'P~ with respect to .A4n. Here, I show that it is also a 

ce complete axiomatization for the language Z;ff 'pr with respect to .A4,~ . That is, there are no 
new consequences in the languages £ ~  ,pr that follow from CP. Moreover, restricting to finite 
structures does not change anything. 

Theorem 3.7: AX~ 'pr is a sound and complete axiomatization for £~'Pr with respect to both 
A4~ ce and .M~ cP~n (and hence also with respect to both .T~ cP and T cP~n) - ~ b  / "  

We do no better with frame distinguishability. 

Theorem 3.8: For all n, no set .A of formulas in ~g~ 'pr distinguishes .T'~cP~" from j_~n _ F ~ P , ~ .  

(or .Fn cP from .U~ cP -- .T'~cP). 

These results stand in distinction to those proved by Lipman [1997]. Lipman showed 
that there are consequences of the CPA (given his formalization of it) even without common 
knowledge in the language. That is because, in his formalization of the CPA, all information 
sets are required to have positive prior probability. Lipman's (slightly stronger) version of the 
CPA can be formalized as follows: 

CW. There exists a probability space (W, 2(w, Prw) such that, for all i, w, if  PR/ (w)  = 
(ICi(w), Xw,i, Prw,i), then Xw,i C_ Xw, Prw(ICi(w) ) > O, and Prw,i(U) = Prw(UlEi(w)) 
for all U E Xw,i. 

Although CP s seems only slighty stronger that CP, it has an impact on all the results of this 
paper. As Lipman shows, the formula pri(qa A prj(tp) = 0 )  = 0 (which is in E~ 'vr) is valid 
in structures satisfying CP s, so Theorem 3.7 does not hold. In addition, as I show in the full 
paper, AX~ 'c'pr is no longer a complete axiomatization for the language --nrK'C'vr, and CP~ no 
longer distinguishes finite frames that satisfy CW from ones that do not (so that Feinberg's 
result really depends on the fact that he uses CP rather than CW). I discuss these issues in more 

detail in the full paper. 

4 Discussion 

In this paper, I have considered two different ways of characterizing the CPA----by frame 
distinguishability and by complete axiomatizations. The notion of frame distinguishability is 
closer to the notions typically used in the economics community. If .T can be distinguished 
from 7 ,  that amounts to saying that we have a test that can distinguish frames in .T from those 
in .T'. That is analogous to saying that we have a test that distinguishes gold from bronze. 
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Clearly, whether or not we have a distinguishing test depends on how sharp our tools are. In 
this context, "sharpness of  tools" amounts to the expressive power of  the language. 

Having a test that distinguishes gold from bronze does not mean we have a complete 
characterization of  the properties of  gold. But what is a "complete characterization" of  gold? 
Does it suffice to talk about its molecular structure, or do we also have to mention its color and 
the fact that it glitters in the sun? It should be clear that the notion of"complete characterization" 
is language dependent. We have a complete characterization of  gold in a given language 12 if  
we can describe everything that can be said about gold in £. In general, having a complete 
characterization in one language tells us nothing about getting a characterization in a richer 
language. For example, if  we have a weak language, it may be easy to find a complete 
characterization, because there are not many interesting properties of  gold in that language. 
That does not give us any hint of  what would constitute a complete characterization in a richer 
language. (By way of  contrast, if we have a distinguishing test in one language, the same test 
works for any more powerful language.) 

We observed this phenomenon with the CPA: in the language tZ u,p~ there is nothing 
interesting we can say about the CPA. There are no new axioms over and above the axioms 
for reasoning about knowledge and probability in all structures (Theorem 3.7). Once we add 
common knowledge to the language, there are a great many more interesting things that can be 
said about (structures satisfying) the CPA. 

For similar reasons, we may be able to completely characterize a notion without being able 
to distinguish frames that satisfy it from ones that do not. Again, we saw this phenomenon 
with the CPA. We can completely characterize the CPA in the language £~,P" (Theorem 3.7), 
although £~:'P" is of  no help in providing tests to distinguish frames satisfying the CPA from 
ones that do not (Theorem 3.8). If  we add common knowledge to the language, then we 
can distinguish finite frames satisfying the CPA from ones that do not (Theorem 3.2 and its 
extension to n agents---this is essentially the result proved by Feinberg, Samet, and Bonanno 
and Nehring), but cannot distinguish infinite frames satisfying the CPA from those that do not 
(Theorem 3.3); nevertheless, we can completely characterize the properties of(finite or infinite) 
frames satisfying the CPA (Theorem 3.6). 

This leads to both a technical question and a pragmatic one. The technical question is 
whether, in a sufficiently rich language, the agents can distinguish infinite frames satisfying the 
CPA from ones that do not (given only their posterior information). I leave this question open. 
The pragmatic question is which of the two notions I have considered is more appropriate. 
That, of  course, depends on the application. If  we are interested in knowing if  we can test 
whether or not the CPA holds in a given structure, this is a question essentially about frame 
distinguishability. On the other hand, if we are interested in knowing what properties hold in a 
given situation, given a finite collection Z of  facts about the agents' knowledge and beliefs and 
about the true situation (all expressed as formulas in £~,c,pr) and that the CPA holds, this is a 
question that can be answered using a complete axiomatization frame distinguishability is of  
no help. 

Although both notions are useful, it is helpful to be clear about the differences between 
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them. This paper attempts to provide some clarification. 

Appendix: Axiom Systems 

This appendix describes all the axiom systems mentioned in the paper, for the interested reader. 

The axiom system AX~ 'm can be modularized into five components: axioms for propo- 
sitional reasoning, axioms for reasoning about knowledge, axioms for reasoning about linear 
inequalities (since/-probability formulas are basically linear inequalities), axioms for reasoning 
about probability, and axioms for combined reasoning about knowledge and probability, forced 
by assumptions A1 and A2. I describe each component below: 

I. Propositional Reasoning 

Prop. All instances of propositional tautologies 

R1. From ~ and ~ ~ ~p infer 

II. Reasoning About Knowledge 

K1. (K i~  A IKi(~a ~ ~P)) ~ Ki~b 

K2. K i ~  

K3. KicZ ~ h~/,-~cZ 

K4. ~Ki~ ~ K i ~ K ~  

RK. From ~ infer Ki 

III. Axioms for reasoning about linear inequalities 

I1. (alPri(qOl) + . . .  + ampri(~m) _> b) ¢-~ (alpr,(qol) + ' "  + ampr,(~m) + Opr,(qok+l) _> b) 

12. ( alpri( Wl ) + " " + ampri( ~m ) >_ b) =-~ ( aj~pri( ~j~ ) + . . . + aj~pri( ~jm ) _> b ), i f  j l  , . . . , jm 
is a permutation of 1 , . . . ,  m 

I3. (alpri (~l)  + " "  + ampri(~m) >_ b) A (a~pri(~l) + ' "  + a~mPri(~m) >_ b') =~ 
(al + a])pri(~,)  + . . . + (am + a~)pri(g~m) _> (b + b') 

14. (a lpr i (~ , )  + " " + ampri(~m) > b) ~-~ (ClpTi(~l) "~- " " " "~- Cmpri(~m) ~_ db) i f  d > 0 

I5. (alpri (~l)  + " "  + ampri(~m) > b) V (alpri(~l)  + " "  + ampri(g~m) _< b) 

16. (alpri(cpl) + ' " +  ampri(~m) > b ) ~  (alpri(cPl) + ' " +  ampri(qOm) > b') i fb  > b' 
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IV. Reasoning about probabilities 

e l .  pri(~) _> 0 

P2. pri(true) = 1 

P3. pT,(  A ¢ )  + A = 

RP. From ~ ~ @ infer pri(cp) = pr/(@) 5 

V. Reasoning about knowledge and probabilit ies 

KP1. K~(~) =~ pr~(~)= 1 

KP2. ~ ~ K ~ ,  i f ~  is an/-probability formula or the negation of  an/-probability formula. 

AX~ ,C,pr consists of  all the axioms and rules of  AX~ ''pr, together with the following axiom 

and rule for common knowledge: 6 

VI. Reasoning About Common Knowledge 

C1. Cop ¢-~ E(V) A Ccp) 

RC. From cp ~ E(~p A ¢)  infer cp ~ C ¢  

Finally, here is the axiom CP'~ used in AX~ K'c'"~, which generalizes CP[: 

CP'~. If  Cpl, . . . ,  qOm are mutually exclusive formulas, aikj, i = 1 , . . . ,  n, j = 1 , . . . ,  m, k = 

• • • ~ ~ i=1  a i k j  ~ • • ~ • • • 1, h, are rational numbers such that ~ = 0, for j = 1 . m, k = l, h, 

andi* E { 1 , . . . , n } , t h e n  

~ C (  Ain=l(Ejm= 1 a i l j P r i ( 7 ) j )  ~_ 0) A (Ain=l(Ejm=l a i l j p r i ( 9 9 j )  = O )  

• , , A 

(E?:i  > 0) A > 0))) . . . ))  

Acknowledgements: 

I would like to thank Bart Lipman for useful discussions regarding the differences between CP 
and CP s and Dov Samet for his examples regarding separation of  convex sets. 

5In [Fagin and Halpern 1994], this inference rule is stated as the axiom pr/(qo) = pr/(@) if ~ ¢> ¢ is 
a propositional tautology. We need the more general inference rule to prove, for example, that pr i (Kj~)  = 
p r i ( K j K j ~ ) .  

6In [Fagin, Halpern, Moses, and Vardi 1995; Halperu and Moses 1992] there is also an axiom that says 
E~ ¢v K ~  h . . .  A K ~ .  This axiom is unnecessary here because I have taken E~ to be an abbreviation (whose 
definition is given by the axiom), rather than taking E to be a primitive operator. 
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