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Probabilistic Robotics

Key idea:
Explicit representation of uncertainty
using the calculus of probability theory

e Perception = state estimation
e Action = utility optimization



Axioms of Probability Theory

Pr(A) denotes probability that proposition A is true.

 0<Pr(A<1
e  Pr(True)=1 Pr(False) =0

e Pr(AvB)=Pr(A)+Pr(B)-Pr(AAB)



A Closer Look at Axiom 3

Pr(Av B) =Pr(A)+Pr(B)—Pr(AA B)

True
A AAB B




Using the AXioms

Pr(Av—A) = Pr(A)+Pr(=A)—-Pr(Aa—-A)
Pr(True) = Pr(A)+Pr(—A)-Pr(False)
1 = Pr(A) + Pr(—=A) -0

Pr(-A) = 1-Pr(A)



Discrete Random Variables

e X denotes a random variable.

e X can take on a countable number of
values In {X{, X5, ..., X }-

® P(X=x,), or P(x,), is the probability
that the random variable X takes on
value Xx;.

® P( ) Is called probability mass function.



Continuous Random Variables

e X takes on values In the continuum.

® p(X=x), or p(x), Is a probability density
function.

Pr(x e (a,b)) = ? 0(X)dx

p(x) |

I e




Joint and Conditional Probability

e Pp(X=x and Y=y) = P(X,Y)

e |[f Xand Y are independent then
P(X,y) = P(X) P(y)

® P(x | y) Is the probability of x given y
P(X 1y) =PXy) 7/ P(y)
P(X,y) =P 1Y) P(y)

e |[f Xand Y are independent then
P(X 1Y) =P(X)



Law of Total Probability, Marginals

Discrete case Continuous case

> P(x)=1 [ p(x) dx=1

P(X) =" P(x,y) p(x) = [ p(x,y) dy
y

P(x) =2 P(xIY)P(Y)  p(x)=]p(x|y)p(y)dy
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Bayes Formula

P(X,y) = P(x]y)P(y) = P(y | x)P(x)

—

P(y|x) P(x) likelihood -prior

P —
(X‘ y) P(y) evidence




Normalization

P(x|y)=
-

Algorithm:

VX: aux

P9 PO by %) P(x)

P(y)

P(y)™* = -

ZP(YIX)P(X)

=P(y|x) P(x)

77 —
ZaUXXIy
X

VX:P(x|y)=mnaux,,
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Conditioning
e | aw of total probability:
P(x) = j P(x, 2)dz
P(x) = | P(x] 2)P(2)dz
P(x|y)=[P(x|y,2)P(z]y) dz
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Bayes Rule
with Background Knowledge

P(y[x,z) P(x]|2)
P(y|2)

P(x]y,2)=
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Conditioning

e Total probability:
P(x) =IP(X, 2)dz

P(x) = | P(x] 2)P(2)dz
P(x|y) = [ P(x]y,2) P(z) dz
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Conditional Independence

P(x,y|2)=P(x|2)P(y|z)

equivalent to

P(x|z)=P(x]|z,y)
and

P(y|2)=P(y|z x)
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Simple Example of State Estimation

® Suppose a robot obtains measurement z
e What is P(open|z)?

-
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Causal vs. Diagnhostic Reasoning

e P(open|z) is diagnostic.
® P(z]open) is causal.

e Often canedge is easier to

obtain. count frequencies!

® Bayes rule allows us to use causal
knowledge:

P(z | open)P(open)
P(z)

P(open|z) =
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Example

* P(z|lopen) = 0.6 P(z]-open) = 0.3
* P(open) = P(—open) = 0.5

P(z |open)P(open)
P(z |open) p(open) + P(z | —open) p(—open)
0.6-0.5 2
0.6-05+0.3.05 3

P(open|z) =

P(open|z) = 0.67

* 7 raises the probability that the door is open.
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Combining Evidence

® Suppose our robot obtains another
observation z,.

* How can we integrate this new
Information?

® More generally, how can we estimate
P(x| z,...z,,)?
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Recursive Bayesian Updating

P(zn| X, 2a,...,2Zn-1) P(X| Z1,...,Zn-1)
P(anZl ..... Zn—l)

Markov assumption: z, Is independent of z,,...,z,_; If
we know X.

P(zn| X) P(X]|z1,...,2Zn-12)
P(an Zl,...,Zn—l)
=1 P(Zn'X) P(X| Zl,...,Zn—l)

=Th.n H P(zi|x) P(x)

i=1...n

P(x|zy,...,20) =
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Example: Second Measurement

o P(Zzl()pen) =0.5 P(22|—.open) = 0.6
* P(open|z;)=2/3

o (open|2,.2,) = P(z, | open) P(open |z,)

P(z, | open) P(open|z,)+ P(z, | —open) P(—open| z,)

1 2

_ 2 0.625
8

1
2

3
3 1
+ ——
5 3

* 7, lowers the probability that the door is open.
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Actions

e Often the world is dynamic since
e actions carried out by the robot,
e actions carried out by other agents,
e or just the time passing by
change the world.

®* How can we Incorporate such
actions?
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Typical Actions

® The robot turns iIts wheels to move

® The robot uses its manipulator to grasp
an object

® Plants grow over time...

e Actions are never carried out with
absolute certainty.

® |n contrast to measurements, actions
generally increase the uncertainty.
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Modeling Actions

® To Incorporate the outcome of an
action u into the current “belief”, we
use the conditional pdf

P(x]|u,x’)

® This term specifies the pdf that
executing u changes the state
from X’ to X.
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Example: Closing the door

-
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State Transitions

P(x]u,x’) for u = “close door”:

0.9\‘
0

If the door Is open, the action “close
door” succeeds in 90% of all cases.

27



Integrating the Outcome of Actions

Continuous case:

P(x|u) :IP(x\u,x')P(x')dx'

Discrete case:

P(x|u)=) P(x|u,x")P(x’)
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Example: The Resulting Belief
P(closed |u) =) P(closed |u, x")P(x')
= P(closed |u, open)P(open)
+ P(closed | u,closed)P(closed)
9.9 1 3 15

10 8 1 8 16
P(open|u) = > P(open|u,x")P(x")

= P(open|u,open)P(open)

+ P(open|u,closed)P(closed)

1 5 03 1

x X

10 8 1 8 16
=1-P(closed |u)
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Bayes Filters: Framework

® Given:
e Stream of observations z and action data u:
d ={u,,z,...,u,z}
e Sensor model P(z]|x).
e Action model P(x]u,x’).
e Prior probability of the system state P(X).

e \Wanted:

e Estimate of the state X of a dynamical system.
e The posterior of the state is also called Belief:

Bel(x,) =P(x |u,,z ...,u,,Zz)
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Markov Assumption

p(zt | XO:t’ Z1:t’ul:t) — p(zt |Xt)
p(xt ‘ Xl:t—l’ Z1:t’ul:t) — p(xt ‘ Xt—l’ut)
Underlying Assumptions
e Static world

® |ndependent noise
® Perfect model, no approximation errors
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Z = observation
u = action

Bayes Filters x = state

Bel(x,)=P(x |u,z...,u,Z)
Bayes =n P(z, | x,u,z,...,u) P(x |u,z,...,u)

Markov =n P(Zt Xt) P(Xt |U1,Zl, ...,Ut)

Total prob. =17} P(Zt Xt). P(Xt ul’zl""’ut’xt—l)
D(Xt—l U, 4y, ""ut) dxt—l

Markov =7 P(Zt | Xt) J‘P(Xt |Ut, Xt—l) F)(Xt_1 U, Z,, ...,Ut) dxt—l

Markov = 77|:)(Zt | Xt) I P(Xt | u,, Xt—l) P(Xt—l U, 2, ..., Zt—l) dXt—l

=1 P(z,1%) [P(X | % ;) Bel(x ;) dx,;
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Bel(x) =7 P(z,1%) [ P(x |u, %) Bel(x_,) dx,

Algorithm Bayes_filter( Bel(x),d ):
17=0
If d is a perceptual data item z then
For all x do
Bel'(x) = P(z | x)Bel(x)
n=n+ Bel'(x)
For all x do
Bel'(x) = 7 'Bel'(x)

Else if d is an action data item u then

© NGO hA WDNE

 —
©

For all x do
Bel'(X) =jP(x|u,x') Bel(x') dx'

Return Bel’(Xx)

R
N

33



Bayes Filters are Familiar!

Bel(x) =7 P(z,1%) [ P(x |u, %) Bel(x_,) dx,

e Kalman filters

* Particle filters

* Hidden Markov models

® Dynamic Bayesian networks

e pPartially Observable Markov Decision
Processes (POMDPs)
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Summary

® Bayes rule allows us to compute
probabilities that are hard to assess
otherwise.

® Under the Markov assumption,
recursive Bayesian updating can be
used to efficiently combine evidence.

e Bayes filters are a probabilistic tool
for estimating the state of dynamic
systems.
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