Probabilistic Robotics Sebastian Thrun-- Stanford Introduction

> Probabilities Bayes rule Bayes filters

Probabilistic Robotics

Key idea: Explicit representation of uncertainty using the calculus of probability theory

- Perception = state estimation
- Action = utility optimization

Axioms of Probability Theory

Pr(A) denotes probability that proposition A is true.

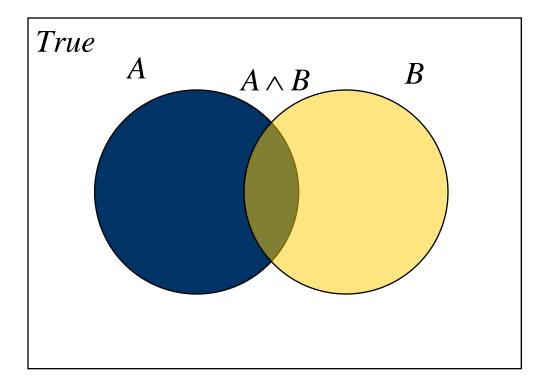
•
$$0 \leq \Pr(A) \leq 1$$

•
$$Pr(True) = 1$$
 $Pr(False) = 0$

• $\Pr(A \lor B) = \Pr(A) + \Pr(B) - \Pr(A \land B)$

A Closer Look at Axiom 3

$Pr(A \lor B) = Pr(A) + Pr(B) - Pr(A \land B)$



Using the Axioms

 $Pr(A \lor \neg A) = Pr(A) + Pr(\neg A) - Pr(A \land \neg A)$ $Pr(True) = Pr(A) + Pr(\neg A) - Pr(False)$ $1 = Pr(A) + Pr(\neg A) - 0$ $Pr(\neg A) = 1 - Pr(A)$

Discrete Random Variables

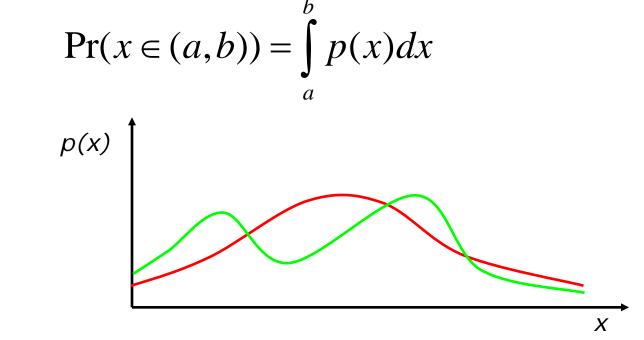
- X denotes a random variable.
- X can take on a countable number of values in {x₁, x₂, ..., x_n}.
- $P(X=x_i)$, or $P(x_i)$, is the probability that the random variable X takes on value x_i .
- P() is called probability mass function.

Continuous Random Variables

• X takes on values in the continuum.

• E.g.

• p(X=x), or p(x), is a probability density function.



Joint and Conditional Probability

•
$$P(X=x \text{ and } Y=y) = P(x,y)$$

- If X and Y are independent then P(x,y) = P(x) P(y)
- $P(x \mid y)$ is the probability of x given y $P(x \mid y) = P(x,y) \mid P(y)$ $P(x,y) = P(x \mid y) P(y)$
- If X and Y are independent then P(x | y) = P(x)

Law of Total Probability, Marginals

Discrete case

Continuous case

 $\sum_{x} P(x) = 1 \qquad \qquad \int p(x) \, dx = 1$

 $P(x) = \sum_{y} P(x, y) \qquad p(x) = \int p(x, y) \, dy$

 $P(x) = \sum_{y} P(x \mid y) P(y) \qquad p(x) = \int p(x \mid y) p(y) \, dy$

Bayes Formula

P(x, y) = P(x | y)P(y) = P(y | x)P(x)

 \Rightarrow

$$P(x \mid y) = \frac{P(y \mid x) P(x)}{P(y)} = \frac{\text{likelihood} \cdot \text{prior}}{\text{evidence}}$$

Normalization

$$P(x \mid y) = \frac{P(y \mid x) P(x)}{P(y)} = \eta P(y \mid x) P(x)$$
$$\eta = P(y)^{-1} = \frac{1}{\sum_{x} P(y \mid x) P(x)}$$

Algorithm:

$$\forall x : \operatorname{aux}_{x|y} = P(y \mid x) \ P(x)$$
$$\eta = \frac{1}{\sum_{x} \operatorname{aux}_{x|y}}$$
$$\forall x : P(x \mid y) = \eta \ \operatorname{aux}_{x|y}$$

Conditioning

• Law of total probability:

$$P(x) = \int P(x, z) dz$$
$$P(x) = \int P(x \mid z) P(z) dz$$
$$P(x \mid y) = \int P(x \mid y, z) P(z \mid y) dz$$

Bayes Rule with Background Knowledge

$$P(x \mid y, z) = \frac{P(y \mid x, z) \ P(x \mid z)}{P(y \mid z)}$$

Conditioning

• Total probability:

$$P(x) = \int P(x, z) dz$$
$$P(x) = \int P(x \mid z) P(z) dz$$
$$P(x \mid y) = \int P(x \mid y, z) P(z) dz$$

Conditional Independence

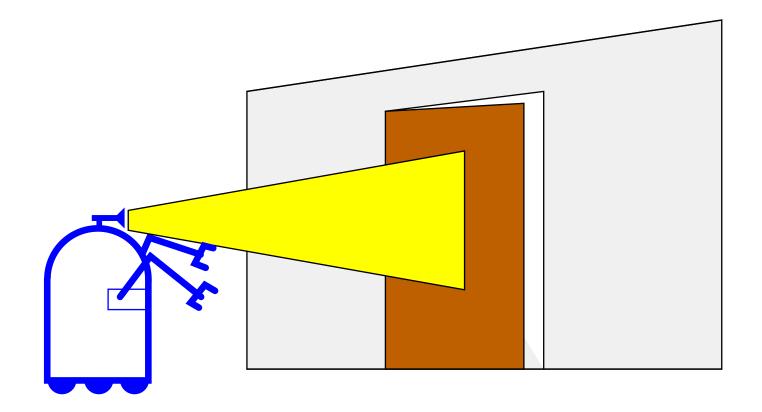
$$P(x, y \mid z) = P(x \mid z)P(y \mid z)$$

equivalent to P(x|z) = P(x|z, y)and

$$P(y|z) = P(y|z,x)$$

Simple Example of State Estimation

- Suppose a robot obtains measurement z
- What is *P(open/z)?*



Causal vs. Diagnostic Reasoning

- *P(open/z)* is diagnostic.
- P(z/open) is causal.
- Often causal knowledge is easier to obtain.
- Bayes rule allows us to use causal knowledge:

$$P(open \mid z) = \frac{P(z \mid open)P(open)}{P(z)}$$

Example

• P(z/open) = 0.6 $P(z/\neg open) = 0.3$

•
$$P(open) = P(\neg open) = 0.5$$

$$P(open \mid z) = \frac{P(z \mid open)P(open)}{P(z \mid open)p(open) + P(z \mid \neg open)p(\neg open)}$$
$$P(open \mid z) = \frac{0.6 \cdot 0.5}{0.6 \cdot 0.5 + 0.3 \cdot 0.5} = \frac{2}{3} = 0.67$$

• z raises the probability that the door is open.

Combining Evidence

- Suppose our robot obtains another observation z_2 .
- How can we integrate this new information?
- More generally, how can we estimate $P(x|z_1...z_n)$?

Recursive Bayesian Updating

$$P(x \mid z_1,...,z_n) = \frac{P(z_n \mid x, z_1,..., z_{n-1}) P(x \mid z_1,...,z_{n-1})}{P(z_n \mid z_1,...,z_{n-1})}$$

Markov assumption: z_n is independent of z_1, \ldots, z_{n-1} if we know *x*.

$$P(x \mid z_1,...,z_n) = \frac{P(z_n \mid x) P(x \mid z_1,...,z_{n-1})}{P(z_n \mid z_1,...,z_{n-1})}$$

= $\eta P(z_n \mid x) P(x \mid z_1,...,z_{n-1})$
= $\eta_{1...n} \prod_{i=1...n} P(z_i \mid x) P(x)$

Example: Second Measurement

•
$$P(z_2/open) = 0.5$$
 $P(z_2/\neg open) = 0.6$

•
$$P(open/z_1)=2/3$$

 $P(open | z_2, z_1) = \frac{P(z_2 | open) P(open | z_1)}{P(z_2 | open) P(open | z_1) + P(z_2 | \neg open) P(\neg open | z_1)}$ $= \frac{\frac{1}{2} \cdot \frac{2}{3}}{\frac{1}{2} \cdot \frac{2}{3} + \frac{3}{5} \cdot \frac{1}{3}} = \frac{5}{8} = 0.625$

• z_2 lowers the probability that the door is open.

Actions

- Often the world is dynamic since
 - actions carried out by the robot,
 - actions carried out by other agents,
 - or just the **time** passing by change the world.

 How can we incorporate such actions?

Typical Actions

- The robot turns its wheels to move
- The robot uses its manipulator to grasp an object
- Plants grow over time...
- Actions are never carried out with absolute certainty.
- In contrast to measurements, actions generally increase the uncertainty.

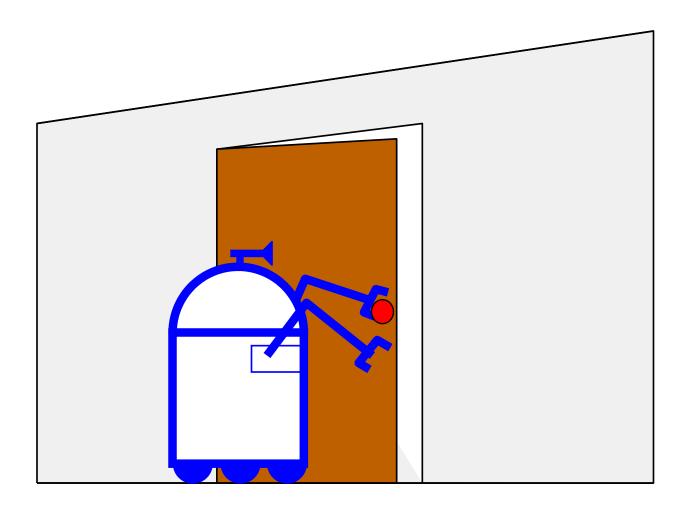
Modeling Actions

 To incorporate the outcome of an action u into the current "belief", we use the conditional pdf

P(x/u,x')

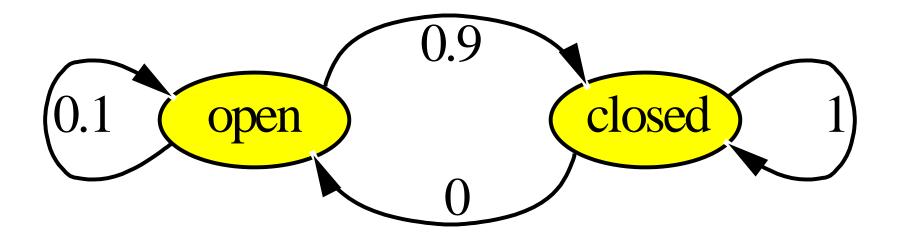
 This term specifies the pdf that executing u changes the state from x' to x.

Example: Closing the door



State Transitions

P(x|u,x') for u = "close door":



If the door is open, the action "close door" succeeds in 90% of all cases.

Integrating the Outcome of Actions

Continuous case:

$$P(x \mid u) = \int P(x \mid u, x') P(x') dx'$$

Discrete case:

$$P(x \mid u) = \sum P(x \mid u, x')P(x')$$

Example: The Resulting Belief $P(closed | u) = \sum P(closed | u, x')P(x')$ = P(closed | u, open)P(open)+ P(closed | u, closed)P(closed) $=\frac{9}{10}*\frac{5}{8}+\frac{1}{1}*\frac{3}{8}=\frac{15}{16}$ $P(open | u) = \sum P(open | u, x')P(x')$ = P(open | u, open)P(open)+ P(open | u, closed) P(closed) $=\frac{1}{10}*\frac{5}{8}+\frac{0}{1}*\frac{3}{8}=\frac{1}{16}$ $=1-P(closed \mid u)$

Bayes Filters: Framework

• Given:

Stream of observations z and action data u:

$$d_t = \{u_1, z_1, \dots, u_t, z_t\}$$

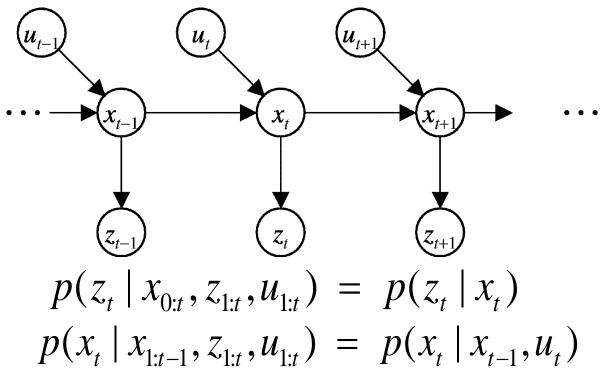
- Sensor model P(z|x).
- Action model P(x|u,x').
- Prior probability of the system state P(x).

• Wanted:

- Estimate of the state X of a dynamical system.
- The posterior of the state is also called Belief:

$$Bel(x_t) = P(x_t | u_1, z_1 ..., u_t, z_t)$$

Markov Assumption



Underlying Assumptions

- Static world
- Independent noise
- Perfect model, no approximation errors

z = observationu = actionx = state

Bayes Filters

$$\begin{array}{l} \boxed{Bel(x_t)} = P(x_t \mid u_1, z_1 \dots, u_t, z_t) \\ \text{Bayes} &= \eta \ P(z_t \mid x_t, u_1, z_1, \dots, u_t) \ P(x_t \mid u_1, z_1, \dots, u_t) \\ \text{Markov} &= \eta \ P(z_t \mid x_t) \ P(x_t \mid u_1, z_1, \dots, u_t) \\ \text{Total prob.} &= \eta \ P(z_t \mid x_t) \ \int P(x_t \mid u_1, z_1, \dots, u_t, x_{t-1}) \\ P(x_{t-1} \mid u_1, z_1, \dots, u_t) \ dx_{t-1} \\ \text{Markov} &= \eta \ P(z_t \mid x_t) \ \int P(x_t \mid u_t, x_{t-1}) \ P(x_{t-1} \mid u_1, z_1, \dots, u_t) \ dx_{t-1} \\ \text{Markov} &= \eta \ P(z_t \mid x_t) \ \int P(x_t \mid u_t, x_{t-1}) \ P(x_{t-1} \mid u_1, z_1, \dots, u_t) \ dx_{t-1} \\ \text{Markov} &= \eta \ P(z_t \mid x_t) \ \int P(x_t \mid u_t, x_{t-1}) \ P(x_{t-1} \mid u_1, z_1, \dots, z_{t-1}) \ dx_{t-1} \\ \end{array}$$

$$= \eta P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

$$Bel(x_t) = \eta P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

- 1. Algorithm **Bayes_filter**(*Bel(x),d*):
- *2.* η=0
- 3. If *d* is a perceptual data item *z* then
- 4. For all *x* do
- 5. $Bel'(x) = P(z \mid x)Bel(x)$

$$\theta. \qquad \eta = \eta + Bel'(x)$$

7. For all x do

8.
$$Bel'(x) = \eta^{-1}Bel'(x)$$

9. Else if *d* is an action data item *u* then

10. For all x do
11.
$$Bel'(x) = \int P(x | u, x') Bel(x') dx'$$

12. Return *Bel'(x)*

Bayes Filters are Familiar!

$$Bel(x_t) = \eta P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

- Kalman filters
- Particle filters
- Hidden Markov models
- Dynamic Bayesian networks
- Partially Observable Markov Decision Processes (POMDPs)

Summary

- Bayes rule allows us to compute probabilities that are hard to assess otherwise.
- Under the Markov assumption, recursive Bayesian updating can be used to efficiently combine evidence.
- Bayes filters are a probabilistic tool for estimating the state of dynamic systems.