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The Many Facets of  HMMs...

Speech Recognition

@#$% Found no match 
for your criteria.

DNA/Protein Analysis
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Let me 
check my 
HMM...

What can 
you say 

about  his 
condition?

Robot Navigation and Planning

Medical Decision Making
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Overview
• The Components of HMMs
• Evaluating a sequence WRT an HMM (Problem 1)
• Fitting a sequence to an HMM (Problem 2)
• Fitting an HMM to sequences      (Problem 3)
• Issues, Extensions, Applications
• Conclusion
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HMMs:
The Basics
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What are HMMS?

• Stochastic (probability-based)

• Generative 
Provide a putative production process for generating data.

• Satisfying the Markov Property
The present state summarizes the past. 
Future events depend only on the current situation –
not on the preceding ones.

Models that are: 

8

Example: Weather modeling and prediction

Fair

Rainy

Winter Storm
Pr(T<5°)=0.01
Pr(Overcast)=0.02
Pr(Precipitation)=0.1
Pr(Wind>15mph)=0.2

Breezy & Cold
Pr(T<5°)=0.8
Pr(Overcast)=0.5
Pr(Precipitation)=0.3
Pr(Wind>15mph)=0.9

Pr(T<5°)=0.999
Pr(Overcast)=0.9
Pr(Precipitation)=0.95
Pr(Wind>15mph)=0.85

Pr(T<5°)=0.3
Pr(Overcast)=0.8
Pr(Precipitation)=0.95
Pr(Wind>15mph)=0.6

0.6 0.1

0.1

0.3

0.3

0.3

0.3

0.5
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• States ( S = s1 , . . . , sN ) – Hidden
• Observations ( V = v1 , . . . , vM )

The Building Blocks of HMMs
An HMM is a tuple: λ = < S, V, A, B, ππππ >

Parameters:
• A: Transition matrix Aij = Pr( qt+1 = sj | qt = si )

• B: Observation matrix Bik = Pr( ot = vk | qt = si )

• ππππ:  Initial distribution   πi = Pr( q1 = si )

∑
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Examples  Revisited

Speech Recognition

DNA/Protein Analysis

States: Possible phonemes in a word
Observations: Uttered Phonemes
Transitions: Phoneme order in a word

States: Positions for nucleotides
deletion/matching/insertion

Observations: Nucleotides
Transitions: Nucleotides order in 

the DNA

States for modeling purposes.
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Robot Navigation and Planning

Medical Decision Making

States: Patient's (varying) condition
Observations: Instrument Readings
Transitions: Changes due to treatment

States: Robot's position
Observations: Sensors Readings
Transitions: Changes due to movement

A  physical notion of states.
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HMMs: The Three Problems

Problem 1: Given a model λ and a sequence of observations 
O=O1,...,OT , find O’s probability under λ, Pr(O|λ).

Problem 2: Given a model λ and a sequence of observations 
O=O1,...,OT , find the best state sequence
Q=q1,...,qT explaining it. 

Problem 3: Given a sequence of observations 
O=O1,...,OT , find the best model λ that could 

have generated it.
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Example: Modeling Protein Families
Different protein families (e.g. Globin, Flavodoxin, Kinase), have 
different characteristic sequences. Families are represented as HMMs.

Globin FlavodoxinKinase (NDK)

(http://www.sanger.ac.uk/cgi-bin/Pfam/)

Observations 20 Amino acids (Glu, Gly, Arg,...)
States Anchor points for typical AA emition, 

insertion and deletion

Problem 3: Given multiple aligned sequences, learn the family HMM

Problem 2: Given a family HMM and a sequence, find the best 
alignment.

Problem 1: Given a family HMM and a protein sequence, calculate 
how likely the protein is to be in the family.
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Basic Tools

Bayes Rule: Pr(X|Y) = Pr(Y|X) • Pr(X)
Pr(Y)

Def. of Conditional Probability: Pr(X|Y) =
Pr(X,Y)
Pr(Y)

Chain Rule of Conditional Probability:
Pr(X1, X2, ..., Xn) = Pr(X1) Pr(X2|X1)...Pr(Xn| X1, ..., Xn-1)

Pr(qt+1=sj | qt=si)  =  Pr(qt+1=sj | q1=si1, q2=si2, ..., qt= sit=si)
The Markov Property (An assumption – not a fact!):
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[Rabiner&Juang86, Rabiner89]  The ultimate Introduction to HMMs, 
and application in NLP (speech recognition)

[Charniak93] and references therein.  HMMs in NLP

[Leek97, Ray&Craven01] HMMs in NLP, Infomation Extraction from Biomedical text

[Hauskrecht&Fraser98] HMMs in medical decision making

[Simmons&Koenig95, Koenig&Simmons96, 
Shatkay&Kaelbling97,Shatkay&Kaelbling02] HMMs for robot navigation

[Churchill89, Krogh et al 94a,  Krogh et al 94b, Eddy 98, 
Burge97, Durbin et al 98] and references therein. HMMs in computational biology.
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Problem 1
Pr(Sequence|Model)
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Pr(Sequence|Model)
Given:

λ = < S, V, A, B, ππππ > An HMM
O = O1,...,OT A sequence of observations 

Calculate:
The probability of O to be generated under the model λ, Pr(O|λ)

Example Application:
Given a protein sequence, P,  and several  possible protein 
families (λ1... λL), find the most likely family of P. 
argmax[Pr(P|λi)]λi
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Calculating Pr(O|λ)
Example
Sequence: TPEE A (small) protein motif

HMM, λ: 

ππππ1111 = 1

If we knew that the generating state sequence is: 1234

Pr(O1=T|λ, q1=1)·Pr(O2=P|λ, q2=2)·Pr(O3=E|λ, q3=3)·Pr(O4=E|λ, q4=4) =       
0.2·0.9·0.25·0.8 = 0.036

0.9

Pr(E)=0.8
Pr(Q)=Pr(D)=0.1

Pr(E)=Pr(A)=
Pr(S)=Pr(G)=0.25

Pr(P)=0.9
Pr(E)=0.1

Pr(S)=0.8
Pr(T)=0.2

0.60.9 4
1

3
0.4

2
0.1

1
0.1

Pr(O=TPEE|λ,Q =1234) =

Pr(O=TPEE|Q=q1q2q3q4 ,λ)·Pr(Q=q1q2q3q4 | λ)=     ππππq1
· Bqioi

Aqjqj+1
∑

q1q2q3q4

∑
q1q2q3q4

∏
=

4

1i
∏

=

3

1j

Pr(O=TPEE|λ) =    Pr(O=TPEE, Q = q1q2q3q4 |λ)=∑
q1q2q3q4

No explicit state sequence       Marginalize:
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Calculating Pr(O|λ) (Cont.)

In the general case

Q= q1...qT

∑Pr(O|λ)=     Pr(O | Q,λ)·Pr(Q | λ)=              ππππq1   
· Bqioi

· Aqjqj+1∏
=

T

i 1
∏

−

=

1T

1j
∑

Q= q1...qT

Computation time

� NT State-Sequences Q (N states, T time steps)
� 2T products per sequence
� O(TNT) 
Not Feasible

20

Calculating Pr(O|λ) (Cont.)

Solution: 
An alternative approach, using Dynamic Programming

Pr(O = o1,...,oT | λ)=     Pr(O = o1,...,oT , qT = si| λ)∑
=

N

i 1

Idea: Sum over all final-states rather than over all state-sequences:

• Define, for any time t≤T:  ααααt(i) = Pr(o1,...,ot , qt = si | λ).

• Initialization: αααα1(i) = ππππi · Bi o1

• Recursion: ααααt+1(j) =    ααααt(i)·Aij·Bj ot+1

• Termination: Pr(O = o1,...,oT | λ)=   ααααT(i)

Making it work:

∑
=

N

i 1

∑
=

N

i 1
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Calculating Pr(O|λ) (last!)

Computation time

ααααt(i)=Pr(o1,...,ot , qt = si | λ): Known as the Forward probability.

☺ Calculating each αt+1(j) : N Summands
☺ N states, T time points       NT such summations.
☺ 2 products per summand
☺ O(TN2)

Efficient Computation!
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Problem 2

Find Best States for 
Observations 
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Best States for Observations
Given:

λ = < S, V, A, B, ππππ > An HMM
O = O1,...,OT A sequence of observations 

Find:
The sequence of states, Q = q1,...,qT , that generated O under 
the model λ

Example Application:
Given a protein sequence, P, and an HMM model for a family 
(a profile), find the best alignment of P with the profile.

24

What is the “Best” State Sequence?

• Optimize the expected number of correct states.
The state at time t, qt, is si that maximizes Pr(qt =si|O,λ).

The resulting sequence Q = q1,...,qT may not be a valid one... 

• Optimize the whole state-sequence probability, Pr(Q|O,λ).
Equivalent to: Q* =  argmax[Pr(Q,O| λ)]

Q
Efficiently done using the Viterbi Algorithm.

Options:
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• Define, for any time t≤T:  
δδδδt (i)= max[Pr(q1,...,qt-1,qt = si ,o1,...,ot | λ).

q1,...,qt-1

•Initialization: δδδδ1(i) = ππππi · Bio1 

The Viterbi Algorithm
Dynamic Programming (again)
Q*= argmax[Pr(Q,O|λ)] , without explicit expansion of all NT state sequences.

Q

•Termination: P*= max[Pr(Q,O|λ)] )=max[δδδδT (i)] 
Q i

Q*= ,    ,...,    *
1q *

2q *
Tq *

Tq = argmax[δδδδT ( i)] ,i

ψψψψt+1(j)=argmax[δδδδt (i)Aij]
i

*
1−tq = ψψψψt (    )*

tq

ψψψψ1(i)=0

•Recursion:   δδδδt+1(j) = max[δδδδt (i)·Aij]·Bj ot+1i
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Example

Sequence: TPSS

HMM, λ: 

ππππ1111 = 1

0.9

Pr(E)=0.8
Pr(Q)=Pr(D)=0.1

Pr(E)=Pr(A)=
Pr(S)=Pr(G)=0.25

Pr(P)=0.9
Pr(E)=0.1

Pr(S)=0.8
Pr(T)=0.2

0.60.9 4
1

3
0.4

2
0.1

1
0.1

Find the State Sequence Q*:
T:   δ1(1)=0.2   δ1(2)=δ1(3)=δ1(4)=0                                           ψ1(i)=0

P:   δ2(2)=0.2·0.9·0.9=0.162  δ2(1)=δ2(3)=δ2(4)=0                     ψ2(2)=1

S:   δ3(3)=0.162·0.9·0.25=0.03645 δ3(1)=δ3(2)=δ3(4)=0           ψ3(3)=2 

S:   δ4(3)=0.03645·0.4·0.25=0.003645 δ3(1)=δ3(2)=δ3(4)=0     ψ4(3)=3 *
4q=3

3321
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Problem 3

Learning an HMM 
from Data
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Best Model for Observations
Given:
O = O1,...,OT Sequence(s) of observations 

Find:
The model λ = < S, V, A, B, ππππ > that generated O 

Example Application:
Given multiple protein sequences, P1,...,PK, from a protein 
family, find an HMM for the family (a profile).

Implicit also:
The set of possible observation values, V = v1 , . . . , vM
The number of states in the model, N.
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Finding an HMM
Example
Sequences:

(Modified from [Durbin et al 98])

A (small) Globin motif

D
–
–
–
– H–AGV

NAGAI
N–ANV
D–AEV
N–––V

4321

Count-based estimates:

Match-state M1

A12 = Pr(qt+1=M2 | qt=M1) ≈

B1V = Pr(ot=V | qt=M1) ≈ = 4/5(# of times V observed in M1)
(# of visits to M1)

(# of transitions from M1 to M2)
(# of transitions from M1)

= 4/5
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ππππ1111 = M1

0.8

Pr(N)=0.6
Pr(D)=Pr(H)=0.2

Pr(A)=0.75
Pr(G)=0.25

Pr(G)=Pr(E)=
Pr(A)=Pr(N)=0.25

Pr(V)=0.8
Pr(I)=0.2

0.751

HMM, λ: 

M1 M2 M3 M4

I1
0.25

0.5Pr(A)=Pr(D)=0.5

Example (Cont.)

Sequences:

D
–
–
–
– H–AGV

NAGAI
N–ANV
D–AEV
N–––V

4321

D

I

M Match state

Delete state

Insert state

D1Pr(–)=1
0.5

0.2

0.5

0.5
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Formal & General
Given:
O = O1,...,OT Sequence(s) of observations 

Find:
Model λ = < S, V, A, B, ππππ > , maximizing the likelihood Pr(O|λ)

The number of states in the model, N.

• Pick an initial transition and observation model.
• Iterate:

� Use current model and observations to compute a distribution 
on state sequences.

� Use distribution and observations to estimate a new transition 
and observation model, based on expected frequencies.

Use Expected Counts:

E
M
Increases Pr(O|λ) at each iteration, until convergence.
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Baum-Welch Algorithm [Baum et al 71, Rabiner89]

• Receives number of states.

• Picks an initial model.

• Updates iteratively:

πi �

Aij  �
E(# of trans. from si to sj )

E(# of trans. from si ) ;

Bik  �
E(# of times in si observing ok )

E(# of times in si ) .

Expected frequency of si at time 0;
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� αt (i) = Pr(O1 ,..., Ot, qt = si| λλλλ) Forward

� βt (i) = Pr(Ot+1 ,..., OT|qt = si , λλλλ) Backward

� γt (i) = Pr(qt = si |O,λλλλ) =                          =

� ξt (i,j) = Pr(qt = si , qt+1 = sj |O,λλλλ) =                                    =

=

Dynamic programming for calculating:

Baum-Welch Algorithm (details)

λ)|Pr(O
λ)|O, s Pr(q it =

∑
=

N

1j
tt

tt

jj

ii

)()(

)()(

βα

βα

λ)|Pr(O
λ)|O, s q, s Pr(q j1tit == +

∑
=

++

N

1j
tt

1tOjijt

jj

jBAi
1t

)()(

)()( ,

βα

βα

Sum γt (i)’s and ξt (i,j)’s to obtain expected counts.
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[Rabiner&Juang86, Rabiner89] A comprehensive introduction.

[Baum et al 70] and references therein. Baum’s original results.

[Durbin et al 98] and references therein. Applications in computational biology.

• Reaches local maxima
• Strongly depends on initial conditions

• May require a lot of data and many iterations

Baum-Welch Algorithm (last)

General Practical Issues:

35

Issues, Extensions, 
Applications
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State Duration, Semi-Markov Models
Staying d time steps in the same state, si

Standard HMM: 1-pSi

p
q1

Pr(d consecutive time steps in state Si) = p(d-1) · (1-p) 

Geometric distribution over duration in a state. 

Supporting other distributions: q1

Si

....... q2

Pi(d)

λ = < S, V, A, B, ππππ > ∪ { P1, ..., PN }

Pi : A probability distribution over duration d, at state i.
Pi (d) = Pr(staying d time steps in state Si), for d≤D
Pi (d) can be a continuous density function (e.g. Gaussian).
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Multi-Dimensional Data
Observations may be structured (see weather example)

Standard observation sequence: O=O1,...,OT

Oj ∈V={v1, ...,vM}     V is assumed to be a set of atomic values.

Multi-dimensional observations:
Oj ∈

�

V = ��

M1 v,...,v{ } �

iv= < ,      ,  ... ,      >1
iV 2

iV K
iV

�

V is a set of k-dimensional vectors. 

,       , ... ,      1
iV 2

iV K
iV are (typically) assumed to beThe components

conditionally independent given the state
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Multi-Dimensional Data (cont.)

Applications:

• Gene structure prediction over a target DNA sequence, D
• HMM is used for modeling regions in the DNA
• 2-dimensional observations:  <Nucleotide, Conservation tag>.

Nucleotide: {A,C,G,T }     Conservation tag: { . , | , : }
Conservation tag represents alignment of D with an informant sequence.

Robotics: [Cassndra et al 96, Shatkay&Kaelbling97]
• Observations represent the robot’s view in each state.
• They are factored into the view in each cardinal direction: front, left

and right (3-dimensional).

Multi-Dimensional States: Factorial HMMs [Ghahramani and Jordan 97]

Twinscan: [Korf et al 01]
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Other Topics

� Pseudo-counts and priors (Never say Never...)
� Other methods for learning HMMs:

Bayesian Model Merging [Stolcke&Omohundro93,94]

Viterbi training                  [Durbin et al 98]

Optimizing other measures [Rabiner 89]

� Comparing HMMs [Rabiner 89]

� Choosing an initial model [Rabiner 89]

� Constraining HMM with domain [Shatkay&Kaelbling02]

knowledge and data.
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Conclusion

• Generative probabilistic models. Useful for modeling sequences 
with variations and/or noise.

• Efficient ways exist to relate and align sequences with families
(HMMs).

• Generally: Require a lot of data and domain specific knowledge 
to construct.

• Versatile, flexible and general. Support extensions, special 
cases, and a wide variety of applications.
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