Introduction to

Hidden Markov Models

Hagit Shatkay, Celera

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Overview

\qquad

- The Components of HMMs \qquad
- Evaluating a sequence WRT an HMM (Problem 1)
- Fitting a sequence to an HMM (Problem 2) \qquad
- Fitting an HMM to sequences
(Problem 3)
- Issues, Extensions, Applications \qquad
- Conclusion
\qquad

What are HMMS?

Models that are:

- Stochastic (probability-based)
- Generative

Provide a putative production process for generating data.

- Satisfying the Markov Property

The present state summarizes the past.
Future events depend only on the current situation - \qquad not on the preceding ones.

Example: Weather modeling and prediction

The Building Blocks of HMMs

An HMM is a tuple: $\lambda=\langle S, V, A, B, \pi\rangle$

- States $\quad\left(\mathrm{S}=\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{N}}\right)$ - Hidden
- Observations ($\mathrm{V}=\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{M}}$)

Parameters:

Examples Revisited
States: Positions for nucleotides
deletion/matching/insertion
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

HMMs: The Three Problems

Problem 1: Given a model $\boldsymbol{\lambda}$ and a sequence of observations $\mathbf{O}=O_{l}, \ldots, O_{T}$, find \mathbf{O} 's probability under $\boldsymbol{\lambda}, \operatorname{Pr}(\mathbf{O} \mid \boldsymbol{\lambda})$.
\qquad
\qquad
\qquad
Problem 2: Given a model $\boldsymbol{\lambda}$ and a sequence of observations $\boldsymbol{O}=O_{l}, \ldots, O_{T}$, find the best state sequence $\mathbf{Q}=q_{T}, \ldots, q_{T}$ explaining it.

Problem 3: Given a sequence of observations
$\boldsymbol{O}=O_{l}, \ldots, O_{T}, \quad$ find the best model $\boldsymbol{\lambda}$ that could
have generated it.

Example: Modeling Protein Families

Different protein families (e.g. Globin, Flavodoxin, Kinase), have different characteristic sequences. Families are represented as HMMs

Observations $\Rightarrow 20$ Amino acids (Glu, Gly, Arg,...) States $\quad \rightarrow$ Anchor points for typical AA emition insertion and deletion

Problem 3: Given multiple aligned sequences, learn the family HMM
Problem 2: Given a family HMM and a sequence, find the best alignment.
Problem 1: Given a family HMM and a protein sequence, calculate how likely the protein is to be in the family.

Basic Tools

Def. of Conditional Probability: $\operatorname{Pr}(\mathrm{X} \mid \mathrm{Y})=\frac{\operatorname{Pr}(\mathrm{X}, \mathrm{Y})}{\operatorname{Pr}(\mathrm{Y})}$
Bayes Rule: $\operatorname{Pr}(\mathrm{X} \mid \mathrm{Y})=\frac{\operatorname{Pr}(\mathrm{Y} \mid \mathrm{X}) \cdot \operatorname{Pr}(\mathrm{X})}{\operatorname{Pr}(\mathrm{Y})}$

Chain Rule of Conditional Probability:
$\operatorname{Pr}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right)=\operatorname{Pr}\left(\mathrm{X}_{1}\right) \operatorname{Pr}\left(\mathrm{X}_{2} \mid \mathrm{X}_{1}\right) \ldots \operatorname{Pr}\left(\mathrm{X}_{\mathrm{n}} \mid \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}-1}\right)$

The Markov Property (An assumption - not a fact!):
$\operatorname{Pr}\left(\mathrm{q}_{\mathrm{t}+1}=\mathrm{s}_{\mathrm{j}} \mid \mathrm{q}_{\mathrm{t}}=\mathrm{s}_{\mathrm{i}}\right)=\operatorname{Pr}\left(\mathrm{q}_{\mathrm{t}+1}=\mathrm{s}_{\mathrm{j}} \mid \mathrm{q}_{1}=\mathrm{s}_{\mathrm{i} 1}, \mathrm{q}_{2}=\mathrm{s}_{\mathrm{i} 2}, \ldots, \mathrm{q}_{\mathrm{t}}=\mathrm{s}_{\mathrm{it}}=\mathrm{s}_{\mathrm{i}}\right)$
\qquad
[Charniak93] and references therein. HMMs in NLP
[Leek97, Ray\&Craven01] HMMs in NLP, Infomation Extraction from Biomedical text
[Hauskrecht\&Fraser98] HMMs in medical decision making
[Simmons\&Koenig95, Koenig\&Simmons96,
Shatkay\&Kaelbling97,Shatkay\&Kaelbling02] HMMs for robot navigation
[Churchil189, Krogh et al 94a, Krogh et al 94b, Eddy 98,
Burge97, Durbin et al 98] and references therein. HMMs in computational biology.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Basic Tools
Def. of Conditional Probability: $\operatorname{Pr}(\mathrm{X} \mid \mathrm{Y})=\frac{\operatorname{Pr}(\mathrm{X}, \mathrm{Y})}{\operatorname{Pr}(\mathrm{Y})}$
Bayes Rule: $\operatorname{Pr}(\mathrm{X} \mid \mathrm{Y})=\frac{\operatorname{Pr}(\mathrm{Y} \mid \mathrm{X}) \cdot \operatorname{Pr}(\mathrm{X})}{\operatorname{Pr}(\mathrm{Y})}$
Chain Rule of Conditional Probability:
$\operatorname{Pr}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right)=\operatorname{Pr}\left(\mathrm{X}_{1}\right) \operatorname{Pr}\left(\mathrm{X}_{2} \mid \mathrm{X}_{1}\right) \ldots \operatorname{Pr}\left(\mathrm{X}_{\mathrm{n}} \mid \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}-1}\right)$
The Markov Property (An assumption - not a fact!):
$\operatorname{Pr}\left(\mathrm{q}_{\mathrm{t}+1}=\mathrm{s}_{\mathrm{j}} \mid \mathrm{q}_{\mathrm{t}}=\mathrm{s}_{\mathrm{i}}\right)=\operatorname{Pr}\left(\mathrm{q}_{\mathrm{t}+1}=\mathrm{s}_{\mathrm{j}} \mid \mathrm{q}_{1}=\mathrm{s}_{\mathrm{i} 1}, \mathrm{q}_{2}=\mathrm{s}_{\mathrm{i} 2}, \ldots, \mathrm{q}_{\mathrm{t}}=\mathrm{s}_{\mathrm{it}}=\mathrm{s}_{\mathrm{i}}\right)$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Rabiner\&Juang86, Rabiner89] The ultimate Introduction to HMMs,
and application in NLP (speech recognition)
[Charniak93] and references therein. HMMs in NLP
[Leek97, Ray\&Craven01] HMMs in NLP, Infomation Extraction from Biomedical text
[Hauskrecht\&Fraser98] HMMs in medical decision making
[Simmons\&Koeni955, Koenig\&Simmons96,
Shatkay\&Kaelbling97,Shatkay\& Kaelbling02] HMMs for robot navigation
[Churchills9, Krogh et al 94a, Krogh et al 94b, Eddy 98,
Burge97, Durbin et al 98] and references therein. HMMs in computational biology.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
Given a protein sequence, P, and several possible protein families ($\boldsymbol{\lambda}_{1} \ldots \boldsymbol{\lambda}_{\mathrm{L}}$), find the most likely family of P. \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Calculating $\operatorname{Pr}(\mathrm{O} \mid \lambda)$ (Cont.) In the general case Computation time \boldsymbol{N}^{\top} State-Sequences \boldsymbol{Q} (N states, T time steps) $2 T$ products per sequence $\mathrm{O}\left(T N^{T}\right)$ Not Feasible

Calculating $\operatorname{Pr}(\mathrm{O} \mid \lambda)$ (Cont.)

Solution:

An alternative approach, using Dynamic Programming
Idea: Sum over all final-states rather than over all state-sequences:

$$
\operatorname{Pr}\left(\boldsymbol{O}=o_{l}, \ldots, o_{T} \mid \boldsymbol{\lambda}\right)=\sum_{i=1}^{N} \operatorname{Pr}\left(\boldsymbol{O}=o_{l}, \ldots, o_{T}, q_{T}=s_{i} \mid \boldsymbol{\lambda}\right)
$$

Making it work:

- Define, for any time $t \leq T: \boldsymbol{\alpha}_{\boldsymbol{t}}(\boldsymbol{i})=\boldsymbol{\operatorname { P r }}\left(o_{l}, \ldots, o_{t}, \boldsymbol{q}_{t}=\boldsymbol{s}_{\boldsymbol{i}} \mid \lambda\right)$.
- Initialization: $\alpha_{I}(i)=\pi_{i} \cdot B_{i o_{I}}$
- Recursion: $\quad \alpha_{t+1}(j)=\sum_{i=1}^{N} \alpha_{t}(i) \cdot \mathbf{A}_{i j} \cdot \mathbf{B}_{j \boldsymbol{o}_{t+1}}$
- Termination: $\operatorname{Pr}\left(\boldsymbol{O}=o_{l}, \ldots, o_{T} \mid \boldsymbol{\lambda}\right)=\sum_{i=1}^{N} \boldsymbol{\alpha}_{\boldsymbol{T}}(\boldsymbol{i})$

Calculating $\operatorname{Pr}(\mathrm{O} \mid \lambda)$ (last!)

$\boldsymbol{\alpha}_{t}(\boldsymbol{i})=\operatorname{Pr}\left(o_{1}, \ldots, o_{t}, q_{t}=s_{i} \mid \lambda\right)$: Known as the Forward probability

Computation time

(-) Calculating each $\alpha_{t+1}(j): N$ Summands
(-) N states, T time points $\Rightarrow \mathrm{NT}$ such summations.
(-) 2 products per summand
(-) $\mathrm{O}\left(\mathrm{T} N^{2}\right)$

Efficient Computation!

\qquad

Problem 2

Find Best States for Observations

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Best States for Observations

Given:

O = $O_{1}, \ldots, O_{T} \quad$ A sequence of observations \qquad
$\boldsymbol{\lambda}=<\mathbf{S}, \mathbf{V}, \mathbf{A}, \mathbf{B}, \boldsymbol{\pi}>\quad$ An HMM
Find:
The sequence of states, $\boldsymbol{Q}=q_{l}, \ldots, q_{T}$, that generated \boldsymbol{O} under the model $\boldsymbol{\lambda}$ \qquad

Example Application:

Given a protein sequence, P, and an HMM model for a family
\qquad (a profile), find the best alignment of P with the profile. \qquad
\qquad

What is the "Best" State Sequence?

Options:

- Optimize the expected number of correct states. The state at time t, q_{t}, is s_{i} that maximizes $\operatorname{Pr}\left(q_{t}=s_{i} \mid O, \lambda\right)$.緊 The resulting sequence $\mathbf{Q}=q_{l}, \ldots, q_{T}$ may not be a valid one..
- Optimize the whole state-sequence probability, $\operatorname{Pr}(Q \mid O, \lambda)$. Equivalent to: $\mathbf{Q}^{*}=\underset{\mathbf{Q}}{\operatorname{argmax}}[\operatorname{Pr}(\mathrm{Q}, O \mid \mathrm{\lambda})]$

Efficiently done using the Viterbi Algorithm.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Dynamic Programming (again)

$\boldsymbol{Q}^{*}=\underset{Q}{\operatorname{argmax}}[\operatorname{Pr}(Q, O \mid \lambda)]$, without explicit expansion of all N^{\top} state sequences.

- Define, for any time $t \leq T$: $\delta_{t}(i)=\max _{q_{1}, \ldots, q_{t-l}}\left[\operatorname{Pr}\left(q_{l}, \ldots, q_{t-1}, q_{t}=s_{i}, o_{1}, \ldots, o_{t} \mid \lambda\right)\right.$.
\cdot Initialization: $\delta_{I}(i)=\pi_{i} \cdot B_{i_{1}} \quad \psi_{I}(i)=0$
\bullet Recursion: $\quad \boldsymbol{\delta}_{t+1}(\boldsymbol{j})=\max _{i}\left[\boldsymbol{\delta}_{t}(\boldsymbol{i}) \cdot \mathbf{A}_{i j}\right] \cdot \mathbf{B}_{j \boldsymbol{o}_{t+1}} \quad \boldsymbol{\psi}_{t+1}(\boldsymbol{j})=\underset{i}{\operatorname{argmax}}\left[\boldsymbol{\delta}_{t}(i) \mathbf{A}_{i j}\right]$
-Termination: $\left.\boldsymbol{P}^{*}=\max _{Q}[\operatorname{Pr}(Q, O \mid \lambda)]\right)=\max _{i}\left[\boldsymbol{\delta}_{\boldsymbol{T}}(i)\right]$

$$
\boldsymbol{Q}^{*}=q_{1}^{*}, q_{2, \ldots,}^{*} q_{T}^{*} \quad q_{T}^{*}=\underset{i}{\operatorname{argmax}}\left[\boldsymbol{\delta}_{\boldsymbol{T}}(i)\right], q_{t-1}^{*}=\boldsymbol{\psi}_{t}\left(q_{t}^{*}\right)
$$

\qquad
\qquad
\qquad

Example

Sequence: TPSS

\qquad
\qquad
Find the State Sequence Q^{*} :

T: $\quad \delta_{l}(1)=0.2 \quad \delta_{l}(2)=\delta_{l}(3)=\delta_{l}(4)=0$	$\psi_{l}(i)=0$	
P:	$\delta_{2}(2)=0.2 \cdot 0.9 \cdot 0.9=0.162 \quad \delta_{2}(1)=\delta_{2}(3)=\delta_{2}(4)=0$	$\psi_{2}(2)=1$
S:	$\delta_{3}(3)=0.162 \cdot 0.9 \cdot 0.25=0.03645 \delta_{3}(1)=\delta_{3}(2)=\delta_{3}(4)=0$	$\psi_{3}(3)=2$
S:	$\delta_{4}(3)=0.03645 \cdot 0.4 \cdot 0.25=0.003645$	$\delta_{3}(1)=\delta_{3}(2)=\delta_{3}(4)=0$

26
\qquad
\qquad
\qquad
\qquad

Problem 3

Learning an HMM from Data

Best Model for Observations

Given:

$O=O_{1}, \ldots, O_{T} \quad$ Sequence(s) of observations \qquad Implicit also:

The set of possible observation values, $\mathrm{V}=\mathrm{v}_{1}, \ldots$, v_{M}
The number of states in the model, N \qquad
Find:
The model $\mathbf{\lambda}=\langle\mathbf{S}, \mathbf{V}, \mathbf{A}, \mathbf{B}, \boldsymbol{\pi}>$ that generated \mathbf{O}

Example Application:

Given multiple protein sequences, P_{l}, \ldots, P_{K}, from a protein family, find an HMM for the family (a profile)

Finding an HMM

Example

Sequences: V G A - - H A (small) Globin motif
$\mathrm{V}-\mathrm{N}^{2} \quad$ (Modified from [Durbin et al 98])

VEA--D
(Modified from [Durbin et al 98])
VNA--N
I A G A D N
1234
Count-based estimates:
Match-state M_{1}
$A_{12}=\operatorname{Pr}\left(q_{t+1}=M_{2} \mid q_{t}=M_{1}\right) \approx \frac{\left(\# \text { of transitions from } M_{1} \text { to } M_{2}\right)}{\left(\# \text { of transitions from } M_{1}\right)}=4 / 5$
$B_{1 V}=\operatorname{Pr}\left(o_{t}=V \mid q_{t}=M_{1}\right) \approx \frac{\left(\# \text { of times } V \text { observed in } M_{1}\right)}{\left(\# \text { of visits to } M_{1}\right)}=4 / 5$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Baum-Welch Algorithm ${ }_{\text {[Baume ta l 71, Rabinere8] }}$

- Receives number of states.
- Picks an initial model.
- Updates iteratively:
$\pi_{\mathrm{i}} \leftarrow$ Expected frequency of s_{i} at time 0 ;
$A_{i j} \leftarrow \frac{E\left(\# \text { of trans. from } s_{i} \text { to } s_{j}\right)}{E\left(\# \text { of trans. from } s_{i}\right)} ;$
$B_{i k} \leftarrow \frac{\mathrm{E}\left(\# \text { of times in } \mathrm{s}_{\mathrm{i}} \text { observing } \mathrm{o}_{\mathrm{k}}\right)}{\mathrm{E}\left(\# \text { of times in } \mathrm{s}_{\mathrm{i}}\right)}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Baum-Welch Algorithm (details)

Dynamic programming for calculating:

* $\alpha_{t}(\mathrm{i})=\operatorname{Pr}\left(O_{t}, \ldots, O_{t}, \mathrm{q}_{\mathrm{t}}=\mathrm{s}_{\mathrm{i}} \mid \boldsymbol{\lambda}\right) \quad$ Forward
* $\beta_{\mathrm{t}}(\mathrm{i})=\operatorname{Pr}\left(O_{t+1}, \ldots, O_{T \mid} \mid q_{\mathrm{t}}=\mathrm{s}_{\mathrm{i}}, \lambda\right) \quad$ Backward
* $\gamma_{\mathrm{t}}(\mathrm{i})=\operatorname{Pr}\left(\mathrm{q}_{\mathrm{t}}=\mathrm{s}_{\mathrm{i}} \mid \mathbf{O}, \boldsymbol{\lambda}\right)=\frac{\operatorname{Pr}\left(q_{t}=s_{i}, O \mid \lambda\right)}{\operatorname{Pr}(O \mid \lambda)}=\frac{\alpha_{t}(i) \beta_{i}(i)}{\sum_{j=1}^{N} \alpha_{t}(j) \beta_{t}(j)}$
* $\xi_{\mathrm{t}}(\mathrm{i}, \mathrm{j})=\operatorname{Pr}\left(\mathrm{q}_{\mathrm{t}}=\mathrm{s}_{\mathrm{i}}, \mathrm{q}_{\mathrm{t}+1}=\mathrm{s}_{\mathrm{j}} \mathbf{O}, \boldsymbol{\lambda}\right)=\frac{\operatorname{Pr}\left(\mathrm{q}_{\mathrm{t}}=s_{,}, q_{t+1}=s_{j}, O \mid \lambda\right)}{\operatorname{Pr}(O \mid \lambda)}=$
$=\frac{\alpha_{t}(i) A_{t} B_{i, o_{t}} \beta_{t+t}(j)}{\sum_{j=1}^{N} \alpha_{t}(j) \beta_{t}(j)}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Sum $\gamma_{t}(i)$'s and $\xi_{t}(\mathrm{i}, \mathrm{j})$'s to obtain expected counts.

Baum-Welch Algorithm (last)

General Practical Issues:

- Reaches local maxima
- Strongly depends on initial conditions \qquad
- May require a lot of data and many iterations
\qquad

Issues, Extensions, Applications

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad 35 \qquad

State Duration, Semi-Markov Models

Staying d time steps in the same state, \mathbf{s}_{i}

\qquad
\qquad
Geometric distribution over duration in a state.
Supporting other distributions:
$\boldsymbol{\lambda}=<\mathbf{S}, \mathbf{V}, \mathbf{A}, \mathbf{B}, \boldsymbol{\pi}>\cup\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{N}}\right\}$

\mathbf{P}_{i} : A probability distribution over duration d , at state i.
$\mathbf{P}_{\mathbf{i}}(d)=\operatorname{Pr}($ staying d time steps in state $S i)$, for $\mathrm{d} \leq \mathrm{D}$
$\mathbf{P}_{\mathbf{i}}(d)$ can be a continuous density function (e.g. Gaussian).

Multi-Dimensional Data (cont.)

Applications:

Twinscan: [Korf et al 01]

- Gene structure prediction over a target DNA sequence, D
- HMM is used for modeling regions in the DNA
- 2-dimensional observations: <Nucleotide, Conservation tag>. \qquad
Nucleotide: $\{A, C, G, T\} \quad$ Conservation tag: $\{\bullet, \mid,:\}$
Conservation tag represents alignment of \boldsymbol{D} with an informant sequence. \qquad
Robotics: [Cassndra et al 96, Shatkay\&Kaelbling97]
- Observations represent the robot's view in each state.
- They are factored into the view in each cardinal direction: front, left
\qquad and right (3-dimensional).

Multi-Dimensional States: Factorial HMMs [Ghahramani and Jordan 97]
\qquad

Other Topics

* Pseudo-counts and priors (Never say Never...)
* Other methods for learning HMMs:

Bayesian Model Merging	[Stolcke\&Omohundro93,94]
Viterbi training	[Durbin et al 98]
Optimizing other measures	$[$ Rabiner 89]
Comparing HMMs	[Rabiner 89]
Choosing an initial model	[Rabiner 89]
Constraining HMM with domain	[Shatkay\&Kaelbling02]
knowledge and data.	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Conclusion

- Generative probabilistic models. Useful for modeling sequences with variations and/or noise. \qquad
- Efficient ways exist to relate and align sequences with families (HMMs) \qquad
- Generally: Require a lot of data and domain specific knowledge to construct.
- Versatile, flexible and general. Support extensions, special cases, and a wide variety of applications.

Bibliography	
[Baum et al 70]	Baum L. E. (1970). "A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains", The Annals of Mathematical Statistics, 41, \#1, pp. 164-171.
[Burge97]	Burge C. (1997). "Identification of Genes in Human Genomic DNA", PhD Thesis, Stanford University, Stanford, CA.
[Cassandra et al 96]	Cassandra A. R. , Kaelbling L. P. and Kurien J. A. (1996). "Acting Under Uncertainty: Discrete Bayesian Models for Mobile-Robot Navigation", Proc. of the IEEE Int. Conf. on Intelligent Robots and Systems.
[Charniak93]	Charniak E. (1993). "Statistical Language Learning", MIT Press.
[Churchill89]	Churchill G. A. (1989). "Stochastic Models for Heterogeneous DNA Sequences", Bulletin of Mathematical Biology, 51, \#1, pp. 79-94.
[Durbin et al 98]	Durbin R. et al (1998). "Biological Sequence Analysis", Cambridge U. Press.
[Eddy98]	Eddy S. (1998). "Profile Hidden Markov Models", Bioinformatics, 14, pp. 755-763.
[Ghahramani\&Jordan97]	Gharahmani Z. and Jordan M. I. (1997). "Factorial Hidden Markov Models", Machine Learning, 29, pp. 1-31.
[Hauskrecht\&Fraser98]	Hauskrecht M. and Fraser H. (1998)."Planning Medical Therapy Using Partially Observable Markov Decision Processes", Proc. of the Ninth International Workshop on Principles of Diagnostics, pp. 182-189.

Bibliography (cont.)
[Koenig\&Simmons 96] Koenig S. and Simmons R. (1996). "Unsupervised Learning of Probabilistic
Models for Robot Navigation", Proc. of the IEEE Int. Conf. on Robotics and
Automation.

Bibliography (cont.)	
[Shatkay\&Kaelbling97]	Shatkay H. and Kaelbling L. P. (1997). "Learning Topological Maps with Weak Local Odometric Information", Proc. of UCAI'97.
[Shatkay\&Kaelbling02]	Shatkay H. and Kaelbling L. P. (2002). "Learning Hidden Markov Models with Geometrical Constraints: Bridging the Topological-Geometrical Gap", Journal of AI Research, 16, pp. 167-207.
[Simmons\&Koenig95]	Simmons R. and Koenig S. (1995). "Probabilistic Navigation in Partially Observable Environments", Proc. of IJCAI'95.
[Stolcke\&Omohundro93]	Stolcke A. and Omohundro S. M. (1993). "Hidden Markov Model Induction by Bayesian Model Merging", Advances in Neural Information Systems, 5, Morgan Kaufmann, pp. 11-18
[Stolcke\&Omohundro94]	Stolcke A. and Omohundro S. M. (1994). "Best-first Model Merging for Hidden Markov Model Induction", ICSI Technical Report, TR-94-003, International Computer Science Institute, Berkeley.

\qquad
\qquad
\qquad
\qquad
\qquad

