IS

OO~ QR-O0=—

Introduction to

Hidden Markov Models

Hagit Shatkay, Celera

Tiibingen, Sept. 2002

Model Fitting

Data

Model

The Many Facets of HMMs...

Helix Backbone
Carbon Phosphorus

DNA/Protein Analysis




ﬂhat can

you say
about his

Let me
check my

Medical Decision Making ‘

—

Robot Navigation and Planning

4

Overview

* The Components of HMMs

¢ Evaluating a sequence WRT an HMM (Problem 1)
* Fitting a sequence to an HMM (Problem 2)
* Fitting an HMM to sequences (Problem 3)
* Issues, Extensions, Applications

¢ Conclusion

HMMs:
The Basics




What are HMMS?

Models that are:

* Stochastic (probability-based)

* Generative
Provide a putative production process for generating data.

¢ Satisfying the Markov Property
The present state summarizes the past.
Future events depend only on the current situation —
not on the preceding ones.

Example: Weather modeling and prediction

Breezy & Cold
Pr(T<5%=0.8
Pr(Overcast)=0.5
Pr(Precipitation)=0.3
Pr(Wind>15mph)=0.9

Winter Storm
Pr(T<5°=0.999
Pr(Overcast)=0.9
Pr(Precipitation)=0.95
Pr(Wind>15mph)=0.85

Pr(T<5°)=0.01
Pr(Overcast)=0.02
Pr(Precipitation)=0.1
Pr(Wind>15mph)=0.2

Rainy
Pr(T<5°)=0.3
Pr(Overcast)=0.8
Pr(Precipitation)=0.95
Pr(Wind>15mph)=0.6

The Building Blocks of HMMs

An HMM is a tuple: A =<S,V,A, B, t>
* States (S=s,,...,sy)—Hidden
* Observations (V=v,,...,vy)
Parameters: R
* A: Transition matrix ~ A;=Pr(q,, =s;|q,=s, ) 24~

* B: Observation matrix B, = Pr( o, = v, | q,=s;) D B =1

N
* : Initial distribution = Pr(q, =s,) >r=1

0.5

=o
]
oA

P(T) 0.5 P(T)




Examples Revisited

PR

States: Possible phonemes in a word
Observations: Uttered Phonemes
Transitions: Phoneme order in a word

Speech Recognition

States: Positions for nucleotides
deletion/matching/insertion
Observations: Nucleotides
Transitions: Nucleotides order in
the DNA

Helix Backbone
Carbon Phos|

DNA/Protein Analysis

States for modeling purposes.

& g States: Patient's (varying) condition
Observations: Instrument Readings
i Transitions: Changes due to treatment

Medical Decision Making ‘
States: Robot's position

Observations: Sensors Readings

Transitions: Changes due to movement @

>
Robot Navigation and Planning

A physical notion of states.

HMMs: The Three Problems

Problem 1: Given a model A and a sequence of observations
0=0,,...,0;, find O’s probability under A, Pr(O|A).

Problem 2: Given a model A and a sequence of observations
0=0,,...,0;, find the best state sequence
Q=q,,....q; explaining it.

Problem 3: Given a sequence of observations
0=0,,...,0,, find the best model A that could

have generated it.




Example: Modeling Protein Families

Different protein families (e.g. Globin, Flavodoxin, Kinase), have
different characteristic sequences. Families are represented as HMMs.

. (?.Q 24
3 5o LN
4 }@’r LA (http://www.sanger.ac.uk/cgi-bin/Pfanv)

Globin  Kinase (NDK) Flavodoxin

Observations =% 20 Amino acids (Glu, Gly, Arg,...)
States == Anchor points for typical AA emition,
insertion and deletion

Problem 3: Given multiple aligned sequences, learn the family HMM

Problem 2: Given a family HMM and a sequence, find the best
alignment.

Problem 1: Given a family HMM and a protein sequence, calculate
how likely the protein is to be in the family.

Basic Tools

Def. of Conditional Probability: Pr(X[|Y) M
Pr(Y)
Bayes Rule: Pr(X]Y) = I%Y)PI(X)

Chain Rule of Conditional Probability:
Pr(X,, Xy, ...y X;) = Pr(X,) Pr(X,[X))..Pr(X, | X, oo X, )

The Markov Property (An assumption — not a fact!):
Pr(th:Sj [q=s) = Pr(qt+1:S_i [ 9,78, 4=spp, . 4= 8i™S)

g
// [Rabiner&Juang86, Rabiner89] The ultimate Introduction to HMMSs,
and application in NLP (speech recognition)

[Charniak93] and references therein. HMMs in NLP
[Leek97, Ray&Craven01] HMMs in NLP, Infomation Extraction from Biomedical text

[Hauskrecht&Fraser98] HMMs in medical decision making

[Si &Koenig953, Koenig&Si 6,
Shatkay&Kaelbling97,Shatkay&Kaelbling02] HMMs for robot navigation

[Churchill89, Krogh et al 94a, Krogh et al 94b, Eddy 98,
Burge97, Durbin et al 98] and references therein. HMMs in computational biology.




Problem 1

Pr(Sequence|Model)

Pr(Sequence|Model)

Given:

0=0,..,0; A sequence of observations
A=<S,V,A,B,t> AnHMM
Calculate:

The probability of O to be generated under the model A, Pr(O|A)

Example Application:

Given a protein sequence, P, and several possible protein
families (A,... A,), find the most likely family of P.
argTax[Pr(PMi)]

Calculating Pr(O|2)
Example
Sequence: TPEE A (small) protein motif
0.1 .1 .4
m=1 Pr(9)=08 Pr(P)=0.9  Pr(E)=Pr(A)= Pr(E)=0.8
Pr(T)=0.2 Pr(E)=0.1  Pr(S)=Pr(G)=0.25  Pr(Q)=Pr(D)=0.1

HMM, X\:

If we knew that the generating state sequence is: 1234
Pr(O=TPEE|A,Q=1234) =
Pr(0,=T|\, q=1)-Pr(0,=P|\, q,=2)-Pr(0;=E|N, q;=3)-Pr(O,~E|\, q~4) =
0.2:0.9:0.25:0.8 = 0.036
No explicit state sequence mm Marginalize:
Pr(O=TPEE|M) = Pr(O=TPEE, Q = q,q4;4,|1M)=
91929394

4
ZPV(OZTPEE‘Q:‘II‘IZ‘IJ‘Mv}‘)'Pr(Q:‘hqz‘Is‘h‘ )= znql' HquHAqq "
919959, =
41929594 1929394
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Calculating Pr(OJ2) (cont)

In the general case

PrON=X Pr0|QN-Pr@|N=Y  m, - [[B,, TIA,
Q= 4,97 Q= q;-97 = st

Computation time

® NT State-Sequences Q (N states, T time steps)
® 2T products per sequence
® O(TNT)

Not Feasible

Calculating Pr(O|d) (cont)
Solution:

An alternative approach, using Dynamic Programming
Idea: Sum over all final-states rather than over all state-sequences:
N

Making it work:
« Define, for any time <7 o(i) = Pr(o,,...,0,, q,=s; | M).
« Initialization: o;(i) = m; B;

iog

* Recursion:  ot;(j) =Z o,(i)-Ay'B; on1
i=1
N

« Termination: Pr(0 =o,,...,07 | A= 0(i)
i=1

20

Calculating Pr(O|d) (st

o, (i)=Pr(o,,....0, , q,=s; | N): Known as the Forward probability.

Computation time

© Calculating each o,.,(j) : N Summands

© N states, T time points ==NT such summations.
© 2 products per summand

© O(TN?)

Efficient Computation!

21




Problem 2

Find Best States for
Observations

22

Best States for Observations

Given:

0=0,..,0; A sequence of observations
A=<S,V,A,B,t> AnHMM

Find:

The sequence of states, Q = ¢,.....q;, that generated O under
the model A

Example Application:

Given a protein sequence, P, and an HMM model for a family
(a profile), find the best alignment of P with the profile.

23

What is the “Best” State Sequence?

Options:

* Optimize the expected number of correct states.
The state at time ¢, g, is s, that maximizes Pr(q, =s,|O,)).
§ The resulting sequence Q = g,.....,g,may not be a valid one...

* Optimize the whole state-sequence probability, Pr(Q|O,2).
Equivalent to: Q"= argmax[Pr(Q 0| M)]
Q

Efficiently done using the Viterbi Algorithm.

24




The Viterbi Algorithm

Dynamic Programming (again)

Q"= argmax[Pr(Q 0|))] , without explicit expansion of all N” state sequences.
Q

« Define, for any time <7
g (i)=qmﬁlic'[Pr(q,,...,q,_,,q,= 8; 30 1peees0f| M)

*Initialization: &(i) = m;* B, vi()=0

iog

Ot+1

*Recursion:  §,,(j) = max[ 4, (i)-A;]'B; Vii()=argmax| 8, ()A;]

*Termination: P'= mzéx[Pr(Q,O\A)] )=max[ ()]

Q=4 D,.. 4 9= erenad8(9) 9= ;)
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Example
Sequence: TPSS
0.1 .1 .4
m=1 Pr(9)=08 Pr(P)=0.9  Pr(E)=Pr(A)= Pr(E)=0.8

PT)=02  Pr(E)=0.1  Pr(S)=Pr(G)=025 Pr(Q)=Pr(D)=0.1

Find the State Sequence Q"
T: 8(1)=0.2 6,(2)=6,(3)=8,(4)=0 v, (1)=0

v

5,(2)=0.2:0.90.9=0.162 8,(1)=0,(3)=08,(4)=0 w(2)=1
St 8,(3)=0.162-0.9-0.25=0.03645 5,(1)=5,(2)=5,(4)=0 wi(3)=2

i 8,(3)=0.03645-0.4-0.25=0.003645 5,(1)=8,2)=8,(4)=0 w,(3)=3 {3

O—@—0—0O

26

Problem 3

Learning an HMM
from Data

27




Best Model for Observations

Given:
0=0,..0; Sequence(s) of observations
Implicit also:
The set of possible observation values, V=v,, ..., vy

The number of states in the model, N.

Find:
The model A =< 8§, V, A, B, t> that generated O

Example Application:

Given multiple protein sequences, P,,...,Py, from a protein
family, find an HMM for the family (a profile).

28

Finding an HMM

Example

Sequences: VGA- - H A (small) Globin motif
V----N (Modified from [Durbin et al 98])
VEA--D
VNA--N
I AGADN
123 4

Count-based estimates:

Match-state M,

(# of transitions from M, to M)

A = Pr(qu=M, [q=M)) = (# of transitions from M,) =4/5
_ _ _ _ (# of times V observed in M) _
By =Pr(o=V[q=M,) = (# of visits to M) 4/
29
Example (Cont.)
Sequences: z GA-- E Match state
z ; i o g @ Delete state
I AGADN
123 4 @ Insert state
HMM, A: Rt :0'0.5
05

Ml
Pr(V)=0.8
Pr(D)=0.2

Pr():().()
Pr(D)=Pr(H)=0.2

Pr(G)=Pr(E)= Pr(A)=0.75
Pr(A)=Pr(N)=0.25  Pr(G)=0.25

30




Formal & General

Given:

0=0,..0; Sequence(s) of observations
The number of states in the model, N.

Find:
Model A =< S, V, A, B, ® >, maximizing the likelihood Pr(O|)\)

Use Expected Counts:

* Pick an initial transition and observation model.
* lterate:

E * Use current model and observations to compute a distribution
on state sequences.

M * Use distribution and observations to estimate a new transition
and observation model, based on expected frequencies.

Increases Pr(O|)) at each iteration, until convergence.

31

Baum-Welch Algorith M [Baum et a1 71, Rabinerso]

* Receives number of states.
* Picks an initial model.

* Updates iteratively:

n; € Expected frequency of s; at time 0;

A € E(# of trans. from s; to's; ) |

y E(# of trans. from s; ) !
E(# of times in s; observin
Bik €« ( Si g o) )

E(# of times in's;)

32

Baum-Welch Algorithm (detairs)

Dynamic programming for calculating:

* o, (1) =Pr(O, .., O, q.=s/A) Forward
* B,(1)=Pr(O,, ..., Ofg,=s,, A Backward
. Pr(g,=s,0|7) a,()p,(i)
* 9, () =Pr(q=5,]0M) =" pro|y) = ia(j)ﬁ 0
i=l
B Pr(q,=s,.4,,,=5,,01 %)
* & (i) = Pr(q,=s;, 4 = 5 oA = pr((),| ) =
o,()4;B,,,,B,...(j)
> a (A
=l

Sum v, (i)’'s and &, (i,j)’s to obtain expected counts.

33




Baum-Welch Algorithm gasy

General Practical Issues:
* Reaches local maxima
¢ Strongly depends on initial conditions

* May require a lot of data and many iterations

i [Rabiner&Juang86, Rabiner89] A comprehensive introduction.
[Baum et al 70] and references therein. Baum'’s original results.

[Durbin et al 98] and references therein. Applications in computational biology.
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Issues, Extensions,
Applications

State Duration, Semi-Markov Models

Staying d time steps in the same state, s;

Standard HMM: q 1-p

Pr(d consecutive time steps in state Si) = p@?- (1-p)

Geometric distribution over duration in a state.

Supporting other distributions: q % q
A=<S,V,A,B,t>U{P,.. P} 3

P, : A probability distribution over duration d, at state i.
P, (d) = Pr(staying d time steps in state Si), for d<D
P, (d) can be a continuous density function (e.g. Gaussian).

36




Multi-Dimensional Data

Observations may be structured (see weather example)

Standard observation sequence: 0=0,,...,0;

0,eV={v,, ...,vy} V is assumed to be a set of atomic values.

Multi-dimensional observations:
OeV="8,.,% Vi<vlvi . vk

\7 is a set of k-dimensional vectors.

The components v} V72, -, VK are (typically) assumed to be

conditionally independent given the state

37

Multi-Dimensional Data (cont,

Applications:
Twinscan: [Korfetal 01]
» Gene structure prediction over a target DNA sequence, D
* HMM is used for modeling regions in the DNA
» 2-dimensional observations: <Nucleotide, Conservation tag>.
Nucleotide: {A,C,G,T}  Conservation tag: {. , | , o}
Conservation tag represents alignment of D with an informant sequence.
Robotics: [Cassndra et al 96, Shatkay&Kaelbling97]
« Observations represent the robot’s view in each state.

» They are factored into the view in each cardinal direction: front, left
and right (3-dimensional).

Multi-Dimensional States: Factorial HMMS [Ghahramani and Jordan 97]

38

Other Topics

* Pseudo-counts and priors (Never say Never...)
* Other methods for learning HMMs:

Bayesian Model Merging [Stolcke&Omohundro93,94]
Viterbi training [Durbin et al 98]
Optimizing other measures [Rabiner 89]

* Comparing HMMs [Rabiner 89]

* Choosing an initial model [Rabiner 89]

* Constraining HMM with domain [Shatkay&Kaclbling02]

knowledge and data.

39




Conclusion
* Generative probabilistic models. Useful for modeling sequences
with variations and/or noise.

¢ Efficient ways exist to relate and align sequences with families
(HMMs).

* Generally: Require a lot of data and domain specific knowledge
to construct.

* Versatile, flexible and general. Support extensions, special
cases, and a wide variety of applications.

40
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