

Overview

- The Components of HMMs
- Evaluating a sequence WRT an HMM (Problem 1)
- Fitting a sequence to an HMM (Problem 2)
- Fitting an HMM to sequences (Problem 3)
- Issues, Extensions, Applications
- Conclusion

HMMs: The Basics

What are HMMS?

Models that are:

- Stochastic (probability-based)
- Generative Provide a putative production process for generating data.
- Satisfying the Markov Property The present state summarizes the past. Future events depend only on the current situation – not on the preceding ones.

Examples Revisited

States: Possible phonemes in a word Observations: Uttered Phonemes Transitions: Phoneme order in a word

Speech Recognition

States: Positions for nucleotides deletion/matching/insertion Observations: Nucleotides Transitions: Nucleotides order in the DNA

States for modeling purposes.

States: Patient's (varying) condition Observations: Instrument Readings Transitions: Changes due to treatment

Medical Decision Making

States: Robot's position Observations: Sensors Readings Transitions: Changes due to movement

Robot Navigation and Planning

A physical notion of states.

HMMs: The Three Problems

Problem 1: Given a model λ and a sequence of observations **O**=O₁,...,O_T, find **O**'s probability under λ , Pr(**O**| λ).

Problem 2: Given a model λ and a sequence of observations $O = O_{p...,O_T}$, find the best state sequence $Q = q_{p...,q_T}$ explaining it.

 $\begin{array}{l} \underline{\textbf{Problem 3:}} \\ \pmb{O}=O_{l},...,O_{T}, & \text{find the best model } \pmb{\lambda} \text{ that could} \\ \text{have generated it.} \end{array}$

1	Example: Modeling Protein Families							
C C	Different protein families (e.g. <i>Globin, Flavodoxin, Kinase</i>), have different <i>characteristic</i> sequences. Families are represented as HMM:							
	88		N.	Ne.	Ť	(http://www.sanger.ac.uk/cgi-bin/Pfam/)		
	Globin Kinase (NDK) Flavodoxin							
Observations → 20 Amino acids (Glu, Gly, Arg,) States → Anchor points for typical AA emition, insertion and deletion								
Problem 3: Given multiple aligned sequences, learn the family HMM								
Problem 2: Given a family HMM and a sequence, find the best alignment.								
P	Problem 1: Given a family HMM and a protein sequence, calculate how likely the protein is to be in the family.							

Basic Tools

Pr(Y)

Bayes Rule: $Pr(X|Y) = \frac{Pr(Y|X) \cdot Pr(X)}{Pr(Y)}$

Chain Rule of Conditional Probability: $Pr(X_1, X_2, ..., X_n) = Pr(X_1) Pr(X_2|X_1)...Pr(X_n| X_1, ..., X_{n-1})$

The Markov Property (An assumption – not a fact!): $Pr(q_{t+1}\!=\!s_j \mid q_t\!=\!s_i) \ = \ Pr(q_{t+1}\!=\!s_j \mid q_1\!=\!s_{i1,} q_2\!=\!s_{i2, \ \dots,} q_t\!=\!s_{it}\!=\!s_i)$

[Rabiner&Juang86, Rabiner89] The ultimate Introduction to HMMs, and application in NLP (speech recognition)

E Com [Charniak93] and references therein. HMMs in NLP

 $[Leek 97, Ray \& Craven 01] \ \mbox{HMMs in NLP, Infomation Extraction from Biomedical text}$

[Hauskrecht&Fraser98] HMMs in medical decision making

[Simmons&Koenig95, Koenig&Simmons96,

Shatkay&Kaelbling97,Shatkay&Kaelbling02] HMMs for robot navigation

[Churchill89, Krogh et al 94a, Krogh et al 94b, Eddy 98, Burge97, Durbin et al 98] and references therein. HMMs in *computational biology*.

Problem 1 Pr(Sequence|Model)

Pr(Sequence|Model)

Given:

 $\mathbf{O} = O_{\uparrow}, \dots, O_{\intercal} \qquad \text{A sequence of observations}$

$\lambda = \langle S, V, A, B, \pi \rangle$ An HMM

Calculate:

The probability of \boldsymbol{O} to be generated under the model $\boldsymbol{\lambda}, \Pr(\boldsymbol{O}|\boldsymbol{\lambda})$

Example Application:

Given a protein sequence, *P*, and several possible protein families $(\lambda_{f}...\lambda_{L})$, find the most likely family of *P*. $\underset{\lambda_{i}}{argmax}[Pr(P|\lambda_{i'}]]$

Calculating $Pr(O|\lambda)$ (Cont.)

In the general case

 $\Pr(\mathbf{O}|\boldsymbol{\lambda}) = \sum_{\mathbf{Q}==q_1...q_T} \Pr(\mathbf{O} \mid \mathbf{Q}, \boldsymbol{\lambda}) \cdot \Pr(\mathbf{Q} \mid \boldsymbol{\lambda}) = \sum_{\mathbf{Q}==q_1...q_T} \boldsymbol{\pi}_{q_1} \cdot \prod_{i=1}^{T} B_{q_i o_i} \cdot \prod_{j=1}^{T-1} A_{q_j q_{j+1}}$

Computation time

- ⊗ **N^T State-Sequences Q** (N states, T time steps)
- 8 27 products per sequence
- $\otimes O(TN^T)$

Not Feasible

Calculating $Pr(O|\lambda)$ (Cont.)

Solution:

An alternative approach, using **Dynamic Programming** Idea: Sum over all final-states rather than over all state-sequences:

 $Pr(\mathbf{O} = o_1, ..., o_T \mid \mathbf{\lambda}) = \sum_{i=1}^{N} Pr(\mathbf{O} = o_1, ..., o_T, q_T = s_i \mid \mathbf{\lambda})$

Making it work:

- Define, for any time $t \le T$: $\alpha_t(i) = Pr(o_1, \dots, o_t, q_t = s_i | \lambda)$.
- Initialization: $\boldsymbol{\alpha}_{I}(i) = \boldsymbol{\pi}_{i} \cdot \mathbf{B}_{i o_{I}}$
- Recursion: $\mathbf{\alpha}_{t+1}(j) = \sum_{i=1}^{N} \mathbf{\alpha}_{t}(i) \cdot \mathbf{A}_{ij} \cdot \mathbf{B}_{j \circ_{t+1}}$
- Termination: $Pr(\mathbf{O} = o_1, \dots, o_T \mid \mathbf{\lambda}) = \sum_{l=1}^{N} \alpha_T(l)$

Calculating $Pr(O|\lambda)$ (last!)

 $\alpha_t(i) = Pr(o_1, \dots, o_t, q_t = s_i \mid \lambda)$: Known as the **Forward probability**.

Computation time

- \bigcirc Calculating each $\alpha_{t+1}(j)$: N Summands
- \bigcirc N states, T time points \rightarrow NT such summations.
- © 2 products per summand
- O(TN²)

Efficient Computation!

Problem 2

Find Best States for Observations

Best States for Observations

Given:

 $\boldsymbol{O}=O_1,\ldots,O_T$

A sequence of observations $\lambda = \langle S, V, A, B, \pi \rangle$ An HMM

Find:

The sequence of states, **Q** = q_1, \dots, q_T , that generated **O** under the model λ

Example Application:

Given a protein sequence, P, and an HMM model for a family (a *profile*), find the best *alignment* of *P* with the profile.

What is the "Best" State Sequence?

Options:

- Optimize the expected number of correct states. The state at time *t*, q_v is s_i that maximizes $Pr(q_t = s_i | O, \lambda)$. ***** The resulting sequence $\mathbf{Q} = q_{p,...,q_T}$ may not be a valid one...
- Optimize the whole *state-sequence probability*, $Pr(Q|O,\lambda)$. Equivalent to: $\mathbf{Q}^* = \operatorname{argmax}_{\mathbf{Q}}[\Pr(\mathbf{Q}, O \mid \lambda)]$

Efficiently done using the Viterbi Algorithm.

Best Model for Observations

Given:

 $\mathbf{O} = O_{\eta,\dots,O_T} \qquad \qquad \text{Sequence}(s) \text{ of observations}$

Implicit also: The set of possible observation values, V = v_1 , \ldots , v_M The number of states in the model, N.

Find:

The model $\lambda = \langle S, V, A, B, \pi \rangle$ that generated **O**

Example Application:

Given multiple protein sequences, $P_1,...,P_k$, from a protein family, find an HMM for the family (a *profile*).

Formal & General

 $\label{eq:constraint} \begin{array}{ll} \textbf{O} = O_{\gamma,\dots,O_T} & \text{Sequence}(s) \text{ of observations} \\ \\ \text{The number of states in the model, N.} \\ \\ \hline \textbf{Find:} \\ \\ \text{Model } \boldsymbol{\lambda} = < \mathbf{S}, \mathbf{V}, \mathbf{A}, \mathbf{B}, \boldsymbol{\pi} > , \text{maximizing the likelihood } Pr(\boldsymbol{O}|\boldsymbol{\lambda}) \end{array}$

Use Expected Counts:

Given:

- Pick an initial transition and observation model.
- $M^{\,\ast}\,$ Use distribution and observations to estimate a \it{new} transition and observation model, based on $\it{expected}$ frequencies.

Increases $Pr(\mathbf{O}|\lambda)$ at each iteration, until convergence.

Baum-Welch Algorithm [Baum et al 71, Rabiner89]

- Receives number of states.
- Picks an initial model.
- Updates iteratively:
 - $\pi_i \leftarrow$ Expected frequency of s_i at time 0;

$$A_{ij} \leftarrow \frac{\mathsf{E}(\texttt{\# of trans. from } s_i \text{ to } s_j)}{\mathsf{E}(\texttt{\# of trans. from } s_i)};$$

$$B_{ik} \leftarrow \frac{E(\# \text{ of times in } s_i \text{ observing } o_k)}{E(\# \text{ of times in } s_i)}$$

Baum-Welch Algorithm (last)

General Practical Issues:

- Reaches local maxima
- Strongly depends on initial conditions
- May require a lot of data and many iterations

[Rabiner&Juang86, Rabiner89] A comprehensive introduction. [Baum et al 70] and references therein. Baum's original results. [Durbin et al 98] and references therein. Applications in computational biology.

Issues, Extensions, Applications

State Duration, Semi-Markov Models Staying d time steps in the same state, s_i Standard HMM: q_1 S $Pr(d \text{ consecutive time steps in state } Si) = p^{(d-1)} \cdot (1-p)$ Geometric distribution over duration in a state. $P_i(d)$ Supporting other distributions: q_1 q $\lambda = \langle \mathbf{S}, \mathbf{V}, \mathbf{A}, \mathbf{B}, \boldsymbol{\pi} \rangle \cup \{ \mathbf{P}_1, ..., \mathbf{P}_N \}$ S, **P**_i: A probability distribution over duration d, at state i. $\mathbf{P}_{i}(d) = \Pr(\text{staying } d \text{ time steps in state } Si), \text{ for } d \leq D$ $\mathbf{P}_{i}(d)$ can be a *continuous* density function (e.g. Gaussian).

Multi-Dimensional Data

Observations may be structured (see weather example)

Standard observation sequence: O=O1,...,OT

 $\textbf{O}_{j} \in V{=}\{v_{1},...,v_{M}\} \quad V \text{ is assumed to be a set of atomic values}.$

Multi-dimensional observations:

 $O_{j} \in \vec{\mathbf{V}} = \{ \vec{\mathbf{v}}_{1}, ..., \vec{\mathbf{v}}_{M} \} \qquad \vec{\mathbf{v}}_{i}^{=} < v_{i}^{1} \ v_{i}^{2}, ..., v_{i}^{K >} \}$

\vec{V} is a set of *k*-dimensional vectors.

The components $~V_i^l~~V_i^{2}, \ldots,~V_i^K$ are (typically) assumed to be conditionally independent given the state

Multi-Dimensional Data (cont.)

Applications:

Twinscan: [Korf et al 01]

- Gene structure prediction over a target DNA sequence, \pmb{D}
- HMM is used for modeling regions in the $\ensuremath{\mathsf{DNA}}$
- 2-dimensional observations: <Nucleotide, Conservation tag>.
 Nucleotide: {A,C,G,T } Conservation tag: { . , | , : }
 Conservation tag represents alignment of **D** with an informant sequence.

Robotics: [Cassndra et al 96, Shatkay&Kaelbling97]

- · Observations represent the robot's view in each state.
- They are factored into the view in each cardinal direction: front, left and right (3-dimensional).

Multi-Dimensional States: Factorial HMMs [Ghahramani and Jordan 97]

Other Topics

- * Pseudo-counts and priors (Never say Never...)
- * Other methods for learning HMMs: Bayesian Model Merging [Stolcke&Omohundro93,94] Viterbi training [Durbin et al 98] Optimizing other measures [Rabiner 89]
 * Comparing HMMs [Rabiner 89]
 * Choosing an initial model [Rabiner 89]
 * Constraining HMM with domain knowledge and data.

Conclusion

- Generative probabilistic models. Useful for modeling sequences with variations and/or noise.
- Efficient ways exist to relate and align sequences with families (HMMs).
- Generally: Require a lot of data and domain specific knowledge to construct.
- Versatile, flexible and general. Support extensions, special cases, and a wide variety of applications.

Bibliography

[Baum et al 70]	Baum L. E. (1970). "A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains", The Annals of Mathematical Statistics, 41, #1, pp. 164-171.
[Burge97]	Burge C. (1997). "Identification of Genes in Human Genomic DNA", PhD Thesis, Stanford University, Stanford, CA.
[Cassandra et al 96]	Cassandra A. R., Kaelbling L. P. and Kurien J. A. (1996). "Acting Under Uncertainty: Discrete Bayesian Models for Mobile-Robot Navigation", Proc. of the IEEE Int. Conf. on Intelligent Robots and Systems.
[Charniak93]	Charniak E. (1993). "Statistical Language Learning", MIT Press.
[Churchill89]	Churchill G. A. (1989). "Stochastic Models for Heterogeneous DNA Sequences", Bulletin of Mathematical Biology, 51, #1, pp. 79-94.
[Durbin et al 98]	Durbin R. et al (1998). "Biological Sequence Analysis", Cambridge U. Press.
[Eddy98]	Eddy S. (1998). "Profile Hidden Markov Models", Bioinformatics, 14, pp. 755-763.
[Ghahramani&Jordan97]	/ Gharahmani Z. and Jordan M. I. (1997). "Factorial Hidden Markov Models", Machine Learning, 29, pp. 1-31.
[Hauskrecht&Fraser98]	Hauskrecht M. and Fraser H. (1998). "Planning Medical Therapy Using Partially Observable Markov Decision Processes", Proc. of the Ninth International Workshop on Principles of Diagnostics, pp. 182-189.

Bibliography (cont.)

[Koenig&Simmons 96]	Koenig S. and Simmons R. (1996). "Unsupervised Learning of Probabilistic Models for Robot Navigation", Proc. of the IEEE Int. Conf. on Robotics and Automation.
[Korf et al 01]	Korf I. et al (2001). "Integrating genomic homology into gene structure prediction", Proc. of ISMB'01, pp. S140-S148.
[Krogh et al 94a]	Krogh A. et al (1994). "Hidden Markov Models in Computational Biology", Journal of Molecular Biology, 235, pp. 1501-1531.
[Krogh et al 94b]	Krogh A., Mian S.I. and Haussler D. (1994). "A Hidden Markov Model that Finds Genes in E. Coli DNA", Nucleic Acids Research, 22, pp. 4768-4778.
[Leek97]	Leek T.R. (1997). "Information Extraction Using Hidden Markov Models", MSc thesis, Dept. of Computer Science, University of California, San Diego.
[Rabiner&Juang86]	Rabiner L.R., Juang B.H. (1986). "An Introduction to Hidden Markov Models", IEEE ASSP Magazine, 3, #1, pp. 4-16.
[Rabiner89]	Rabiner L.R. (1989). "A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition", Proc. of the IEEE, 77, #2, pp. 257-285.
[Ray&Craven01]	Ray S. and Craven M. (2001). "Representing Sentence Structure in Hidden Markov Models for Information Extraction", Proc. of UCAI'01.

Bibliography (cont.)					
[Shatkay&Kaelbling97]	Shatkay H. and Kaelbling L. P. (1997). "Learning Topological Maps with Weak Local Odometric Information", Proc. of IJCAI'97.				
[Shatkay&Kaelbling02]	Shatkay H. and Kaelbling L. P. (2002). "Learning Hidden Markov Models with Geometrical Constraints: Bridging the Topological-Geometrical Gap", Journal of AI Research, 16, pp. 167-207.				
[Simmons&Koenig95]	Simmons R. and Koenig S. (1995). "Probabilistic Navigation in Partially Observable Environments", Proc. of IJCAI'95.				
[Stolcke&Omohundro93]	Stolcke A. and Omohundro S. M. (1993). "Hidden Markov Model Induction by Bayesian Model Merging", Advances in Neural Information Systems, 5, Morgan Kaufmann, pp. 11-18				
[Stolcke&Omohundro94]	Stolcke A. and Omohundro S. M. (1994), "Best-first Model Merging for Hidden Markov Model Induction", ICS1 Technical Report, TR-94-003, International Computer Science Institute, Berkeley.				