
Fluid-Like Swarms with

Predictable Macroscopic Behavior

Diana Spears, Wesley Kerr, and William Spears

Department of Computer Science
University of Wyoming, Laramie, WY 82071

dspears@cs.uwyo.edu

Abstract. This paper is concerned with assuring the safety of a swarm
of agents (simulated robots). Such behavioral assurance is provided with
the physics method called kinetic theory. Kinetic theory formulas are
used to predict the macroscopic behavior of a simulated swarm of in-
dividually controlled agents. Kinetic theory is also the method for con-
trolling the agents. In particular, the agents behave like particles in a
moving gas.
The coverage task addressed here involves a dynamic search through a
bounded region, while avoiding multiple large obstacles, such as build-
ings. In the case of limited sensors and communication, maintaining spa-
tial coverage – especially after passing the obstacles – is a challenging
problem. Our kinetic theory solution simulates a gas-like swarm motion,
which provides excellent coverage. Finally, experimental results are pre-
sented that determine how well the macroscopic-level theory, mentioned
above, predicts simulated swarm behavior on this task.

1 Safe Swarms

The research in this paper is designed with two objectives in mind: to effectively
accomplish a difficult surveillance task, and to accomplish it in a manner that is
“safe.” By “safe” we mean that the multi-agent collective that accomplishes the
task is, in the aggregate, both predictable (behaviorally assured) and controllable.

The traditional approach to achieving safe agents is to engineer safety into
the individual agents (e.g., [1] [2] [3]) and, sometimes, also into the particu-
lar interactions between these individual agents. This is typically accomplished
with formal methods, such as model checking [4] or theorem proving [5], control
theory [1], or other formalisms [3].

This paper explores an alternative view of safety. Our alternative view is
motivated by a desire to model swarms (i.e., very large numbers) of agents
cooperatively performing a task. The modern swarm philosophy is one of emer-
gent behavior, which is defined as producing intelligent macroscopic behavior
in the aggregate from lots of simple, unintelligent agents. The key to swarm
agent/robotics emergent behavior is that even though the individual agent be-
haviors are easy to understand and may be expressed as simple rules, describing
the behavior of the swarm as a whole requires a paradigm shift. In other words,



the description of the macroscopic behavior is not a straightforward function of
descriptions of the microscopic behaviors – because safety of a swarm is often too
computationally difficult to achieve by engineering safety into all the individual
agents, which may have complex interactions.

The alternative view of safety that we propose for swarms is founded upon
physics. Our choice is motivated by the fact that physics is the most accurate
of all the scientific disciplines at predicting the macroscopic behavior of huge
numbers of interacting particles using very simple mathematical formulas. Fur-
thermore, physics disciplines, such as fluid dynamics, utilize these formulas for
the design of systems that have desirable properties. Rather than engineer the
properties into the individual particles (which of course cannot be done in most
real-world situations), these disciplines promote engineering using principles at
the macroscopic level. For example, in fluid dynamics, there is a field called the
“control and management of turbulence dynamics,” in which questions are ad-
dressed such as how to ensure that desirable macroscopic fluid properties are
preserved when the flow is controlled in a specified manner. Solutions to these
questions are stated as control theoretic equations, which are expressed in terms
of macroscopic properties of the fluid, such as velocity and pressure [6].

In summary, physicists have developed succinct formulas that are highly pre-
dictive of complex, multi-particle behavior. Such formulas can be used at an
abstract level to design multi-agent systems with desirable properties, where
agents are modeled as particles. The end result is behavioral assurance by engi-
neering safety into the collective, rather than into the individual agents.

2 Physics of Large, Multi-Particle Systems

The study of many-particle systems is one of the most active research areas in
modern physics [7]. Today it is well known that although one could write down
the equations of motion of individual atoms and their interactions, the complex-
ity of doing this for a large number of particles is too daunting. The problem is
not just quantitative (which would lead one to suspect that it could be solved
with improved computational power), but it is also qualitative [7]. For example,
how could one hope to understand the human abilities of natural language and
planning by studying the properties of individual neurons? Likewise, physicists
often predict macroscopic properties of matter, such as volume or pressure, from
microscopic atomic particles by using statistical arguments, such as expectations,
rather than resort to predictions of movement of the individual particles.

The physics of many-particle systems can be subdivided into three main
disciplines [7]:

1. Thermodynamics. In the discipline of thermodynamics, descriptions are
strictly at the macroscopic level. Valid formulas are derived based on a min-
imum number of postulates, without any detailed assumptions about the
microscopic properties of the system.



2. Statistical Mechanics. Here, the macroscopic behavior of a multi-particle
system is described based on the statistical properties of the microscopic
behavior. The assumption is that the system is “in equilibrium.”

3. Kinetic Theory. The most popular physics approach to describing systems
that are not necessarily in equilibrium is kinetic theory. Similarly to statis-
tical mechanics, kinetic theory describes macroscopic behavior in stochastic
terms. Note that kinetic theory subsumes statistical mechanics, i.e., in equi-
librium, the former is the same as the latter.

The approach adopted in this paper is kinetic theory. Kinetic theory is the
discipline of choice because it has a much richer and more extensive theory than
thermodynamics (i.e., “relatively few statements can be made” in thermodynam-
ics [7]), and because many multi-agent applications do not assume equilibrium.

Inspired by the huge success in applying physics to many-particle systems, we
have decided to apply physics, in particular kinetic theory, principles to multi-
agent swarms. Our agents are assumed to be simulated robots. Kinetic theory
is used to control the agents, because fluid-like movement appears to be the
most appropriate approach for a swarm of robots to achieve our task, and ki-
netic theory simulations are frequently used to model and study the movement
of actual fluids.1 In order to achieve a high level of predictive accuracy using
kinetic theory, we use a multi-agent system that behaves like a many-particle
physical system. Here, we show that using kinetic theory for both theory and
simulation produces an excellent match between the two, thus providing a high
degree of system behavioral assurance and safety. It is important to note that
the match between theory and simulation is not achieved with a theory that pre-
dicts individual particle movements, which are generated within the simulation.
Rather, the theory uses stochastic properties of the swarm as a whole to make
its predictions. In other words, the theory is macroscopic and is predictive of the
simulation, which is microscopic in its design and implementation.

3 The Sweeping and Obstacle Avoidance Task

The task being addressed here, which is also described in [9], consists of sweeping
a large group of mobile robots through a long bounded region (a swath of land,
a corridor in a building, a city sector, or an underground passageway/tunnel), to
perform a search, i.e., surveillance. This requires maximum coverage. The robots
have a limited sensing range for detecting other agents/objects. It is assumed
that robots near the corridor boundaries can detect these boundaries, and that
all robots can sense the global direction that they are to move, e.g., by using
a compass. There is no other global information, and the agents behave in a
distributed, non-centralized manner. As they move, the robots need to avoid
large obstacles, such as large buildings. This poses a challenge because with
a limited sensing range, robots on one side of a building cannot necessarily

1 An alternative is a molecular dynamics (MD) simulation that is deterministic. For
results of a physics-based approach using MD simulations, see [8].



communicate with robots on the other side. The search might be for enemy
mines, survivors of a collapsed building or, alternatively, the robots might be
patrolling the area. It is assumed that the robots need to keep moving, because
there are not enough of them to view the entire length of the region at once.
In other words, the robots begin scattered randomly at one end of the corridor
and move to the opposite end (considered the “goal direction”). This is a sweep.
A sweep terminates when all robots have reached the goal end of the corridor,
or a time limit is reached. Once the robots complete one sweep, they reverse
their goal direction and sweep back again. Finally, if stealth is an issue then we
would like the individual robot movements to be unpredictable to adversaries.
It is conjectured that the behavior of a gas is most appropriate for solving this
task, i.e., each robot is modeled as a gas particle.

4 Motivation for Using a Fluid-Like Swarm

The term “fluid” refers to both liquids and gases; this paper focuses on gases
in motion. Although individual atoms or molecules in a gas have unpredictable
locations at any instant in time, the gas is predictable at a macroscopic level.
Furthermore, when gases are placed in a container, they expand to fill the con-
tainer, thereby providing outstanding spatial coverage. When not in an equilib-
rium state, gases can also move in bulk. The gas can be transported either by
advection (due to the velocity of the ambient air in which it has been dispersed)
or due to molecular diffusion, e.g., if the gas is heavier than the ambient air then
it will fall slowly to the ground. Gases will also flow around obstacles, and then
expand after passing the obstacles, thereby filling the space again.

These forms of coverage are precisely the ones required for excellent perfor-
mance on the sweeping and obstacle avoidance task. Therefore, we use a kinetic
theory particle simulation to model our agent swarm performing the task.

5 Kinetic Theory for Simulating Fluids

Our kinetic theory (KT) simulation is a microscopic model of individual particles,
which are considered to be agents, or simulated robots. Our simulation, as well
as this overview of it, borrows heavily from Garcia [10].

When modeling a gas, the number of particles is problematic, i.e., in a gas
at standard temperature and pressure there are 2.687× 1019 particles in a cubic
centimeter. A typical solution is to employ a stochastic model that calculates and
updates the probabilities of where the particles are and what their velocities are.
This is the basis of KT. One advantage of this model is that it enables us to make
stochastic predictions, such as the average behavior of the ensemble. The second
advantage is that with real robots, we can implement this with probabilistic
robot actions, thereby avoiding predictability of the individual agents, e.g., for
stealth.

In KT, particles are treated as possessing kinetic energy but no potential
energy (i.e., an ideal gas), and collisions with other particles are modeled as



purely elastic collisions that maintain conservation of momentum. Using kinetic
theory formulas, we can predict useful macroscopic properties of the system,
such as the average speed or kinetic energy of the particles in the system. For
example, assuming k is Boltzmann’s constant, where k = 1.38 × 10−23 J/K, m
is the mass of any particle, f(v) is the probability density function for speed,
and T is the temperature of the system, then the average speed of any particle
(in 3D) is:

〈v〉 =

∫

∞

0

vf(v)dv =
2
√

2√
π

√

kT

m

From this formula, one can see that the temperature T plays an important role
in KT. In our KT simulation, T is a user-defined system parameter analogous to
real temperature. In other words, increasing T in our system raises the virtual
system heat (analogous to actual heat), for the purpose of increasing the system
kinetic energy and thereby increase the particle motion, i.e., the speed of the
agents in the simulation.

Fig. 1. Schematic for a one-sided Couette flow.

Fig. 2. Schematic for a two-sided Couette flow.

Our KT simulation algorithm is a variant of the particle simulations de-
scribed in [10]. We substantially modified the algorithms in [10] to tailor them
to simulated robots with local views. Robots, modeled as particles, behave in
the aggregate like “Couette flow.” Figure 1, from [10], depicts one-sided Couette
flow, where a fluid moves through some environment between two walls – one



wall moving with velocity vwall, and the other stationary (the environment is
the frame of reference). In this Couette, fluid is assumed to move in the positive
y-direction (i.e., longitudinally toward the goal end of the Couette corridor), and
the positive x-direction goes from the stationary wall to the moving wall (i.e.,
laterally across the Couette corridor). Note that the direction of virtual motion
of Couette walls is determined by using a compass to sense the goal direction. In
general, we have found that a Couette is useful because it introduces an external
source of kinetic energy into the system and gives the agents a direction to move.

Because the fluid is Newtonian and has viscosity, there is a linear velocity
distribution across the system. Fluid deformation occurs because of the shear
stress, τ , and the wall velocity is transferred (via kinetic energy) because of
molecular friction on the particles that strike the wall. On the other hand, the
particles that strike either wall will transfer kinetic energy to that wall. This
does not cause the wall to change velocity, since in a Couette flow the walls are
assumed to have infinite length and depth and therefore infinite mass. We chose
a Couette flow in order to introduce kinetic energy into the system and to give
the particles a direction to move.

Our 2D simulated world models a modified (two-sided) Couette flow in which
both Couette walls are moving in the same direction with the same speed (see
Figure 2). We invented this variant as a means of propelling all robots in a
desired general direction, i.e., the large-scale fluid motion is approximately that
of the walls.

In our simulation, each agent, which is modeled abstractly as a holonomic
particle, can be described by a position vector p and a velocity vector v. At each
time step, every agent resets its position based on how far it could move in the
given time step utilizing its current velocity. Particle velocities are initialized to
be a random function of the (virtual) system temperature T , and these velocities
remain constant unless collisions occur. Collisions are the primary mechanism
for driving particle movement/acceleration in a KT simulation. (Note that with
actual robots, collisions and wall motion would be virtual.) The system updates
the world in discrete time steps, ∆t, which occur on the order of the mean
collision time for an agent.

At each time step, every agent in the system updates its position. When
updating its position, a check is performed first to see if the movement would
cause a (virtual) collision between the agent and a wall. If a collision would occur,
then the agent selects a new velocity from a biased Maxwellian distribution,
which is a function of the system temperature. If the agent is about to strike a
moving wall, then some of the energy from the wall is transferred to the agent.
Inter-agent (virtual) collisions are then processed. The number of collisions in
any given region is a stochastic function of the number of agents in that region.
In particular, the probability of a virtual collision between two agents is based on
their proximity, but is independent of the angle between their velocity vectors.
The new post-collision velocity vectors are based on the center of mass vector,
coupled with a random component. See [10] and [11] for details. This process
continues indefinitely or until a desired state is achieved.



6 The Surveillance Task Simulation

For a model of the surveillance task scenario, we have developed a 2D simula-
tion of the task scenario, i.e., an obstacle-laden corridor with KT-driven robots
flowing through it. The “two-sided” variant of the traditional Couette model is
used (recall this variant from Figure 2), in which both Couette walls move in
the same direction with the same speed. The two-sided Couette is highly effec-
tive at driving bulk swarm movement in the goal direction. The agents begin in
random locations at the top of the corridor, and sweep down the corridor in the
goal direction. Typical results for a sweep are shown in Fig. 3. Because robots
are not capable of distinguishing corridor walls from obstacle walls, any obstacle
wall parallel to the Couette walls is considered to be “Couette” (in motion), and
the (virtual) wall velocity is added to the y-component of the velocity for any
agent that collides with a Couette wall. Therefore, obstacle walls, in addition to
actual Couette walls, can increase the velocity of robots toward the goal.

Inter-robot collisions are processed in localized regions. Likewise, robots only
(virtually) collide with walls that are in close proximity to them.

Fig. 3. KT controllers perform a sweep. The snapshots progress in time from left to
right.

With this simulation of a swarm of agents performing the task, the question
arises of how to use kinetic theory to predict swarm behavior? One option is to
develop a theory that models the physics of the entire task, including obstacles.
This would require considerable work, and would be especially difficult if we
do not know beforehand the number, sizes, and shapes of the obstacles. An
alternative option is to develop a simpler theory that makes assumptions that
do not hold in the full task, and then scale up the task in simulation to see how



well the theory holds when its assumptions are violated. The latter is the option
adopted here, and is the topic of the following section.

7 Theoretical Predictions of Macroscopic Behavior

One of the primary advantages of physics-based swarms is the large existing
body of physics-based theory for predicting system behavior and ensuring that
the swarm will behave “safely.” A secondary advantage is that the theory can
be used for optimal selection of system parameter values [12]. In this section,
we provide evidence that kinetic theory is predictive of the behavior of kinetic-
theory-based simulations. Furthermore, we demonstrate the practical use of the
theory for parameter value selection.

We focus on subtasks of the sweeping and obstacle avoidance task, described
above. Recall that our objectives for the agents in this task are to sweep a corridor
and avoid obstacles. The ultimate objective is to maximize coverage. Consider
two types of spatial coverage: longitudinal (in the goal direction) and lateral
(orthogonal to the goal direction). Longitudinal coverage can be achieved by
movement of the swarm in the goal direction; lateral coverage can be achieved
by a uniform spatial distribution of the robots between the side walls of the
corridor. The objective of the coverage task is to maximize both longitudinal and
lateral coverage in the minimum possible time (i.e., to also maximize temporal
coverage).

To measure how well the robots achieve the task objective, we examine the
following three metrics:

1. The degree to which the spatial distribution of the robots matches
a uniform distribution. This is a measure of lateral coverage of the
corridor and provides confirmation of equilibrium behavior.

2. The average speed of the robots (averaged over all robots in the
corridor). This is a measure of all three types of coverage: lateral,
longitudinal, and temporal. Velocity is a vector consisting of speed
and direction. The type of coverage depends on the direction. To
control the average swarm speed, one can directly vary the value of
the system temperature, T . Therefore, our experiment explores the
relationship between T and average speed.

3. The velocity distribution of all robots in the corridor. This is a
measure of longitudinal spatial coverage, as well as temporal cover-
age. For example, consider the one-sided Couette in Figure 1 again,
and in particular focus on the line representing the velocity distribu-
tion. The slope of that line is inversely proportional to the longitudi-
nal spatial coverage (and the temporal coverage). In other words, for
a given Couette diameter, D, if you increase the wall speed, vwall,
then the slope will be reduced and the longitudinal and temporal
coverage will increase. Below, we run an experiment to examine the
relationship between the wall speed, vwall, and the velocity distribu-
tion in one-sided and two-sided Couettes. The intention is to enable



the system designer to select a wall speed for optimizing the swarm
velocity distribution.

The theory presented in this paper assumes simplified 2D environments with no
obstacles. To develop theory for the full task simulation would require extensive
theoretical physics analyses, which is beyond the scope of this paper. This will
be tackled as future work.

We ran three sets of experiments, in accordance with the metrics defined
above. For each experiment, one parameter was perturbed and eight different
values of the affected parameter were chosen. For each parameter value, 20 dif-
ferent runs through the simulator were executed, each with different random
initial robot positions and velocities. The average simulation results and relative
error (over the 20 runs) were computed and graphed.

For these experiments, we defined the error between the theoretical predic-
tions and the simulation results, denoted relative error, to be:

| theoretical − simulation |
theoretical

× 100

Although the theory assumes no obstacles, in the simulation we ran with
six obstacle densities, ranging from 0% to 50%. Surprisingly, some of the theory
holds well, despite this.

There are two complementary goals for running these experiments. The first
goal is to determine how predictive the theory is. Derivations of all laws (pre-
dictive theoretical formulas) are in [9]. The second goal is to determine the rela-
tionship between parameter settings and system behavior. If a system designer
understands this relationship, he/she can more easily set parameters to achieve
optimal performance. Finally, and most importantly, the reason why these two
goals are complementary is that if the theory is predictive of the system simula-
tion behavior, then future system designers no longer need to run the simulation
to determine the optimal parameter settings – graphs generated from theory
alone will suffice. This can reduce the system design time.

8 Experiment 1: Spatial Distribution

The first experiment examines the equilibrium spatial distribution of agents
within an enclosed region, i.e., a square “container. The agents begin in a tight
Gaussian distribution, which then diffuses until equilibrium has been reached.
During this experiment, there is no goal force or wall movement, and therefore
no externally-directed bulk transport of the swarm.

The purpose of this experiment is to confirm the theoretically expected be-
havior of a KT system in equilibrium, which will thereby verify the correctness
of our implementation – a big advantage of our approach. The KT gas model
predicts that, upon reaching equilibrium, the particles will be spatially uniformly
distributed. To confirm this prediction, we divided the square container in our
KT simulator into a 2D grid of cells. Theory predicts that there should be (on



average) n/c robots per cell, where n is the total number of robots and c is the
total number of grid cells. We ran with six obstacle densities, ranging from 0% to
50%, to determine the sensitivity of the spatial distribution to obstacle density.
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Fig. 4. Relative error for the KT spatial distribution.

Fig. 4 shows the experimental results. Note that despite the introduction of
as much as a 50% obstacle coverage, we can still predict the spatial distribution
with a relative error of less than 10%, which is surprisingly low. The error is very
low once the number of robots is about 300, which is surprising considering that
300 robots is far less than the 1019 particles typically assumed by traditional
kinetic theory.

9 Experiment 2: Average Speed

For the second experiment, we examine the average speed of the robots in the
system. Once again, there is no external force or externally-directed bulk trans-
port of the swarm. However, recall that the agents will increase their speed if
there is an increase in the system temperature, which causes an increase in ki-
netic energy. The objective of this experiment is to examine the relationship
between the temperature, T , and the average speed of the robots. The average
robot speed serves as a measure of how well the system will be able to achieve
complete coverage – because higher speed translates to greater lateral and/or
longitudinal coverage, depending on the velocity direction. This experiment also
serves to verify that our simulation code has been implemented correctly. Note
that not all applications will require maximum coverage; therefore, we want to
study the general question of precisely how specific choices of speed affect cov-
erage.

Our predictive formula for 2D is (see [9] for the mathematical derivation):



〈v〉 =
1

4

√

8πkT

m

where k is Boltzmann’s constant (1.38×1023J/K), m is the robot mass (assumed
to be one), and T is the system temperature.
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Fig. 5. Relative error for the KT average speed.

This theoretical formula is compared with the actual average speed, 〈v〉, of
the robots in the simulation, after the system has converged to an equilibrium
state. There were 300 robots in the simulation. Because temperature affects
speed, temperature was varied from 50◦ Kelvin to 400◦ Kelvin. We ran with six
obstacle densities ranging from 0% to 50%, in order to determine the sensitivity
of the average speed to obstacle density.

The results are striking, as can be seen in Fig. 5. The difference between
the theoretical predictions of the average speed and the simulated average speed
results in less than a 2% error, which is outstanding considering that as much as
a 50% obstacle coverage has been introduced. Finally, note that we can use our
theory to not only predict swarm behavior, but also to control it. Specifically,
by setting the temperature T , a system designer can easily achieve a desired
average speed.

10 Experiment 3: Velocity Distribution

The third experiment concerns the velocity distribution of a robot swarm in a
Couette. The theoretical prediction is compared with simulated behavior. Recall
that in a Couette, fluid flow is in the y-direction – toward the goal. The x-
direction is lateral, across the corridor. In addition to seeing how predictive the



theory is, this experiment also examines the relationship between wall speed,
vwall, and the velocity distribution of the robots in the system.

We first focus on a subtask in which a traditional one-sided Couette flow
drives the bulk swarm movement. Our predictive formula is (see [9] for the
derivation):

vy =
x

D
vwall

where vwall is the velocity of the Couette wall, x is the lateral distance from the
stationary wall, and D is the Couette width. In other words, the theory predicts
a linear velocity distribution.
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Fig. 6. Relative error for the KT velocity distribution.

We set up an experiment to measure the relative error between theory and
simulation, consisting of 300 robots. The corridor was divided into eight dis-
crete longitudinal sub-corridors. Theory predicts what the average speed will be
lengthwise (in the goal direction) along each of the sub-corridors. Within each
sub-corridor, the average y velocity of the robots is measured. The relative er-
ror between the theory and the experimental results is then calculated, for each
sub-corridor. Finally, the relative error is averaged across all sub-corridors and
plotted in Fig. 6 for eight different wall speeds and six different obstacle per-
centages. Note that although the error is reasonably low for 0% obstacles and
high wall speeds, error increases dramatically as obstacles are added.

Why is there a discrepancy between the theory and experimental results?
The reason is that theory predicts a certain linear velocity distribution, but as-
sumes no obstacles. For simplicity, the theory assumes that robots never move
backward (back up the corridor). In the simulator, on the other hand, robots do
move backward, regardless of whether or not there are obstacles – because the



-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1  2  3  4  5  6  7  8

Ve
lo

cit
y

Couette Sub-Corridor

Velocity Distribution

0%
10%
20%
30%
40%
50%

Fig. 7. The velocity distributions as the density of obstacles increases, for one-sided
Couette flow.

simulation has a random component. In fact, as obstacles are introduced into
the simulated world, the frequency of backward moving robots increases sub-
stantially. To examine more closely the effect of obstacles, Figure 7 shows the
velocity distributions themselves (where the wall velocity vwall = 4). Even with
no obstacles, the maximum robot velocity does not quite reach 4.0 (we would
expect 3.75 in the sub-corridor nearest to the wall). This is caused by the back-
ward moves. What is interesting is that the velocity distributions remain linear
up to a reasonable obstacle density (30%), while the slope decreases as obstacles
are added. Adding obstacles is roughly equivalent, therefore, to lowering the wall
velocity vwall!

To see if the correlation between obstacle density and wall velocity holds in
the two-sided Couette flow, we re-ran the previous experiment, but with both
walls having vwall = 4. The results are shown in Figure 8. The theory predicts
(see [9] for the derivation) that for the two-sided Couette, vy = vwall regardless
of the value of x. Note that, as theory predicts, the velocity distribution of the
flow is independent of the distance from the walls – the large scale fluid motion
is approximately that of the walls. Again, increasing obstacle density is very
similar to decreasing wall speed.

In conclusion, without obstacles, the theory becomes highly predictive as the
wall velocity increases. Furthermore, this very predictive theoretical formula can
also be used to achieve a desired swarm velocity distribution, i.e., to control the
swarm – simply set the value of vwall, the virtual wall speed, to achieve the
desired distribution, using the formula. On the other hand, with an increasing
number of obstacles, the predictability of the theory is increasingly reduced.
However, we have shown that (up to quite reasonable densities) the increase in
the number of obstacles is roughly proportional to a reduction in wall velocity,
vwall.
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11 Discussion of Theoretical Predictions

With respect to the average speed and the spatial distribution, the theory is
highly predictive. Although the theory assumes no obstacles, the addition of ob-
stacles to the simulation has a minimal effect on the results, with errors typically
under 10%. Surprisingly, this level of theoretical accuracy is achieved with only
hundreds of robots, which is very small from a kinetic theory perspective.

Our results for the velocity distribution are acceptable for no obstacles, gen-
erally giving errors less than 20%. As the obstacle density increases, so does the
error. However, we have shown that an increase in obstacle density changes the
slope of the linear velocity distribution. This is roughly equivalent to a commen-
surate reduction in wall speed.

In summary, we can conclude that when the actual scenario closely coincides
with the theoretical assumptions (e.g., few obstacles), the theory is highly pre-
dictive. Also, we have provided an important insight into the nature of the effect
that obstacle density has on the system. The most important conclusion to be
drawn from these experiments is that in the future we can largely design KT
systems using theory, rather than computationally intensive simulations, for the
selection of optimal parameter settings. A subsidiary conclusion is that we have
verified the correctness of our swarm code, which is something quite straight-
forward for a physics-based approach but much more difficult for alternative
approaches.

12 Conclusions

KT uses a stochastic algorithm for updating particle positions; therefore KT pre-
dictions can only be approximate. Furthermore, as stated in [10], Monte Carlo



simulations such as KT need very long runs and huge numbers of particles to
acquire enough statistical data to produce highly accurate (theoretically pre-
dictable) results. We cannot guarantee this, since we are developing control al-
gorithms for robotic swarms with a few to a few thousand robots under strict
time limitations. Despite all of these limitations of our KT robotic swarm sim-
ulation, the theory is nevertheless highly predictive of the simulation results.
The conclusion is that our approach of using KT for designing swarm-based
multi-agent systems has great promise for engineering swarms that are “safe.”

13 Related and Future Work

The work that is most related consists of other theoretical analyses of swarm
systems. Our comparisons are in terms of the goal and method of analysis. There
are generally two goals: stability and convergence/correctness. Under stability
is the work in [13–15]. Convergence/correctness work includes [13]. Other goals
of theoretical analyses include time complexity [16], synthesis [17], prediction
of movement cohesion [13], coalition size [14], number of instigators to switch
strategies [18], and collision frequency [19].

Methods of analysis are also diverse. The most relevant is work on physics-
based analyses of physics-based swarm robotics systems. We are aware of four
classes of methods. The first is Lyapunov analyses, e.g., [15]. The second is
force and energy analyses, e.g., [12,17]. The third develops macro-level equations
describing flocking [20]. Finally, the fourth is the most related work of all – the
KT research by Jantz and Doty [19]. Note that although Jantz and Doty showed
that KT can be used to model multi-agent swarms with predictable behavior [19],
our research extends theirs by providing a much more extensive and methodical
study of the relationship between kinetic theory and simulation.

Our current research [21, 22] has compared KT against behavior-based ap-
proaches and found that it performs competitively, even if the alternative algo-
rithms have more information. The next step is to transition KT from simulation
to real robot swarms. We already have substantial progress on robotic implemen-
tations [23], and the next step will be to add KT.
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