
Coverage and Search
Algorithms

Chapter 10

10-2COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

ObjectivesObjectives
To investigate some simple algorithms for covering
the area in an environment

To understand how to break down an environment
into simple convex pieces

To understand how to consider searching
environments with a limited range and limited
direction sensor.

10-3COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

What’s in Here ?What’s in Here ?
Complete Coverage Algorithms

Difficulties and Issues
Boustrophedon Coverage
Other Coverage Ideas

Search Algorithms
Searching and Visibility
Guard Placement
Traveling Salesman Problem
Visibility Search Paths
Searching With Limited Range Visibility

10-4COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Complete Coverage
Algorithms

10-5COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Coverage AlgorithmsCoverage Algorithms
A complete coverage algorithm produces a path
that a robot must travel on in order to “cover” or
travel over the entire surface of its environment.

Applications include:
vacuum and sweeping
painting
searching
security patrolling
map verification
etc…

10-6COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Coverage AlgorithmsCoverage Algorithms
How can we determine a valid path that the robot
can take to cover the whole environment ?

10-7COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Coverage AlgorithmsCoverage Algorithms
One approach is to simply travel in some fixed
direction (e.g., North) until an obstacle is
encountered, then turn around…cover in strips:

Can get tricky due
to obstacle and
border angles.

Can get tricky due
to obstacle and
border angles.

10-8COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Coverage AlgorithmsCoverage Algorithms
Even in rectilinear environments, many problems
may arise:

Gaps left due to
motion inaccuracy.

Gaps left due to
motion inaccuracy.

Crooked coverage due
to wheel discrepancy.

Crooked coverage due
to wheel discrepancy.

This area was missed.This area was missed.

Painted into a corner :(.Painted into a corner :(.

Unreachable areas.Unreachable areas.

10-9COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Coverage AlgorithmsCoverage Algorithms
Is there any hope ?

there will always be some error in terms of coverage.
- may still miss close to edges and in corners

allowing overlapping coverage will help
dividing environment into smaller “chunks” will help

For most applications (not painting the floor) being
“close enough” to the obstacles is sufficient.

sensors can “pick-up”/detect from a certain
distance away.

sometimes, a rough coverage is enough.

10-10COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Boustrophedon CoverageBoustrophedon Coverage
Recall the Boustrophedon cell decomposition of a
polygonal environment:

Critical pointsCritical points

10-11COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Boustrophedon CoverageBoustrophedon Coverage
Now connect adjacent cells to form a graph and
consider an arbitrary ordering of the cells:

(e.g., from left to right)

1

3

4

16

17

20

21

24

23

2

15

22

19

18

14

13

12

9

6

5

7

8

11
10

10-12COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Finding a PathFinding a Path
Perform a depth-first-search (DFS) on the graph to
determine an exhaustive walk through the cells:

dfs(G) {
list L = empty
tree T = empty
choose a starting vertex x
search(x)
WHILE (L nonempty) DO
remove edge (v,w) from end of L
IF (w not yet visited) THEN
add (v,w) to T
search(w)

}

search(vertex v) {
visit(v)
FOR (each edge (v,w)) DO
add edge (v,w) to end of L

}

1
2

3

4
5

6

7

8

9

aL

a
b

k

d

c

f
j

g

h
i

e

bT

1
2

3

4
5

6

7

8

9

a c e f gL

a
b

k

d

c

f
j

g

h
i

e

bT

1
2

3

4
5

6

7

8

9

a c e f iL

a
b

k

d

c

f
j

g

h
i

e

b gT

j

1
2

3

4
5

6

7

8

9

a c e f iL

a
b

k

d

c

f
j

g

h
i

e

b g jT

k

1
2

3

4
5

6

7

8

9

a c e f iL

a
b

k

d

c

f
j

g

h
i

e

b g j kT

1
2

3

4
5

6

7

8

9

a c e f hL

a
b

k

d

c

f
j

g

h
i

e

b g j k iT

etc…

10-13COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Finding a PathFinding a Path
Here is what the DFS ordering may have produced
in our example:

1

13

4

15

9

21

24

23

2

22

19
7

3

12

5 18

14

8

11
106

17

16

20
1

19

2

27 3
4

5

14

6 7

8

9
10

13 11

12

15

16

17

18

24
25

23

20

2226

21

Cells visited in the
following order (blue
numbers indicate
backtracking):

1-3-5-7-12-14-19-23-
24-21-20-22-23-22-
20-18-14-18-20-17-
16-15-16-4-3-4-16-
17-20-21-24-23-19-
14-13-14-12-9-6-8-
11-10-11-8-6-5-6-9-
12-7-5-3-2

Cells visited in the
following order (blue
numbers indicate
backtracking):

1-3-5-7-12-14-19-23-
24-21-20-22-23-22-
20-18-14-18-20-17-
16-15-16-4-3-4-16-
17-20-21-24-23-19-
14-13-14-12-9-6-8-
11-10-11-8-6-5-6-9-
12-7-5-3-2

10-14COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Coverage Along a PathCoverage Along a Path
Once a path is found, the robot visits all of these
cells in that order:

Visitation order may
not be the most
efficient. There are
other ways to
traverse besides the
DFS.

Visitation order may
not be the most
efficient. There are
other ways to
traverse besides the
DFS.

10-15COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Coverage Along a PathCoverage Along a Path
When coming back to cells already visited, it is not
necessary to re-cover the cell again:

Need to compute
path back to
previous cells.

Need to compute
path back to
previous cells.

10-16COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Coverage Along a PathCoverage Along a Path
When entering a cell, the robot performs some
simple maneuvers to cover the cell’s entire area:

Usually, vertical
motions up and
down separated by
a robot width. Such
motions are joined
by travel along the
obstacle boundary.

Usually, vertical
motions up and
down separated by
a robot width. Such
motions are joined
by travel along the
obstacle boundary.

It may still be
necessary to make
path adjustments
due to obstacles.

It may still be
necessary to make
path adjustments
due to obstacles.

10-17COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Coverage Along a PathCoverage Along a Path
Must take care when crossing one cell to another:

Follow a fixed rule:
e.g., always cross at
top of cell, even if extra
coverage is necessary.

Follow a fixed rule:
e.g., always cross at
top of cell, even if extra
coverage is necessary.

Sometimes, backtracking
along same path is
necessary to ensure that
nothing is missed.

Sometimes, backtracking
along same path is
necessary to ensure that
nothing is missed.

Robot must go down then
up along this portion in
order to cover entire cell.

Robot must go down then
up along this portion in
order to cover entire cell.

10-18COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Coverage Along a PathCoverage Along a Path
When backtracking, follow along cell boundaries:

Cover other
cells, then
come back
again (i.e.,
backtracking
in red).

Cover other
cells, then
come back
again (i.e.,
backtracking
in red).

Follow fixed rule when backtracking
(e.g., travel along top of cell boundaries)

Follow fixed rule when backtracking
(e.g., travel along top of cell boundaries)

Continue coverage
maneuvers whenever
an uncovered cell is
encountered during
the walk through the
cells.

Continue coverage
maneuvers whenever
an uncovered cell is
encountered during
the walk through the
cells.

10-19COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Other Coverage IdeasOther Coverage Ideas
There are other ways to decompose the
environment into cells and compute a coverage
path. For example:

circular or diamond-shaped spiral cells
spike cells
brushfire decomposition cells (like GVD)

Each of these, however, may require different
traversal techniques.

Their choice should depend on the robot’s sensor
characteristics.

We will look very briefly at these twoWe will look very briefly at these twoWe will look very briefly at these twoWe will look very briefly at these two

10-20COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

We can alternatively create circular cells defined by
circles extending outwards from the start location:

Circular Coverage PatternsCircular Coverage Patterns

Critical point defined
when circle is tangent
to obstacle.

Critical point defined
when circle is tangent
to obstacle.

Cell boundaries
formed by circles.

Cell boundaries
formed by circles.

10-21COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Circular Coverage PatternsCircular Coverage Patterns
Once again, interconnect cells and do DFS to find
path in graph:

1

2

3

4

5

6

7

8

9

10

11
13

12

14

15

16

17

18

19

20

21

Critical point
defined when
circle is tangent
to obstacle.

Critical point
defined when
circle is tangent
to obstacle.

10-22COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Circular Coverage PatternsCircular Coverage Patterns
Traverse each cell by making “laps” around the cell
where each lap is separated by the robot width:

1

When
obstacle is
encountered
follow along
edge.

When
obstacle is
encountered
follow along
edge.

Alternatively
can spiral
here.

Alternatively
can spiral
here.

10-23COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Can even break down into regions based on GVD
and then traverse cells around obstacles:

Brushfire DecompositionBrushfire Decomposition

When tracing
cell around
obstacle,
robot
maintains
fixed distance
away from
obstacle at all
times (unless
when
adjusting for
cell boundary)

When tracing
cell around
obstacle,
robot
maintains
fixed distance
away from
obstacle at all
times (unless
when
adjusting for
cell boundary)

This technique is best
for robots that have
dead-reckoning
errors. By maintaining
fixed distance from
obstacle, robot can re-
adjust its
measurements and
re-confirm its position.

Robot needs long
distance range sensor
though.

This technique is best
for robots that have
dead-reckoning
errors. By maintaining
fixed distance from
obstacle, robot can re-
adjust its
measurements and
re-confirm its position.

Robot needs long
distance range sensor
though.

10-24COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Search
Algorithms

10-25COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

SearchingSearching
Consider covering an environment for the
purpose of searching for other robots,
fire, intruders, any identifiable object etc…

Robot is equipped with one or more search sensors
of some kind which have either:

unlimited or limited detection range

omni-directional (i.e, 360°) or limited
direction detection capabilities

10-26COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

SearchingSearching
As the robot moves around in the environment, it is
able to search based on its current visibility:

Unlimited range,
Limited direction

Unlimited range,
Limited direction

Limited range,
Omni-directional

Limited range,
Omni-directional

Limited range,
Limited direction.
(Most common for
real robots)

Limited range,
Limited direction.
(Most common for
real robots)

Unlimited range,
Omni-directional
(Most common for
theoretical models)

Unlimited range,
Omni-directional
(Most common for
theoretical models)

10-27COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

VisibilityVisibility

With limited
direction
capabilities,
robot would
have to rotate
to view entire
environment

With limited
direction
capabilities,
robot would
have to rotate
to view entire
environment

Consider a simple environment with no obstacles
and a robot with omni-directional sensing with
unlimited range capabilities.

Which environments can it search (i.e., see)
completely without moving ?

star-shaped polygons

10-28COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

VisibilityVisibility
The kernel of a star-shaped polygon is the area of
the polygon from which the robot
can “see” the entire boundary of
the environment:

Extend lines from each reflex vertex
parallel to edges containing that
vertex. A reflex vertex is one which
forms an inside angle > 180°.

Extend lines from each reflex vertex
parallel to edges containing that
vertex. A reflex vertex is one which
forms an inside angle > 180°.

Kernel formed as
intersection of the
resulting half planes.

Kernel formed as
intersection of the
resulting half planes.

> 180°

10-29COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

What if environment is not star-shaped or has
obstacles ?

kernel is empty (i.e., can’t see whole environment from
one location)

need to determine a set of locations (i.e., view points)
that cover the entire environment

VisibilityVisibility

10-30COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Placing robot at each reflex vertex will ensure
complete visibility coverage. Do you know why ?

VisibilityVisibility

10-31COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Can we cover with less locations ?

This problem is called the Guard Placement
problem or Art Gallery problem.

For a simple polygon environment with n vertices:

n/3 locations are occasionally necessary and always
sufficient to have every point in the polygon visible from
at least one of the locations:

e.g., n = 12 and 12 // 3 = 4 locations
are necessary and sufficient

Guard PlacementGuard Placement

10-32COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

When the environment contains h obstacles and
has n edges (including obstacle edges), it can be
shown that (n+h)/3 locations are sometimes
necessary and always sufficient to cover the entire
environment:

e.g., n = 19, h = 1
then (19+1)//3 = 20//3 = 6
locations are necessary
and sufficient.

Guard PlacementGuard Placement

There are many
possible placements,
here are two …

There are many
possible placements,
here are two …

10-33COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Guard PlacementGuard Placement
How do we compute these locations ?
Can do a 3-coloring of the triangulation:

color each vertex of the triangulation with one of 3 colors
no two vertices sharing a triangulation edge should have
the same color

Each color here
indicates a possible set
of robot locations.

Each color here
indicates a possible set
of robot locations.

Coloring is done through
a DFS, but in some
cases the straight
forward approach does
not always work…it can
be tricky.

Coloring is done through
a DFS, but in some
cases the straight
forward approach does
not always work…it can
be tricky.

10-34COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Search PathsSearch Paths
To perform an exhaustive search, the robot must
move around in the environment

shortest watchman route – the shortest possible path in
the environment such that the robot covers (i.e., sees) all
areas in the environment.

difficult to find exact solution, approximations
are usually simpler and acceptable

Can solve this problem by finding guard placement
locations and then connect them with an efficient
path (i.e., travel between multiple goal locations).

10-35COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Traveling Salesman Problem

10-36COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Traveling Salesman ProblemTraveling Salesman Problem
Given a number of locations that the robot must
travel to, what is the cheapest round-trip route that
visits each location once and then returns to the
starting location ?

(e.g., visiting stations in a building for security checks).

10-37COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Traveling Salesman ProblemTraveling Salesman Problem
Most direct solution:

try all permutations (ordered combinations) and see
which one is cheapest
number of permutations is n! for n locations … impractical !!

There are many approaches to this problem
many use heuristics and approximations

If we don’t need the “optimal” path, we can
compromise for some simpler algorithms.

Assume triangle inequality holds: |uw| ≤ |uv| + |vw|
u

v

w

10-38COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Consider the locations that robot must travel to.

Approximate tour is based on minimum spanning tree
from the start location:

Traveling Salesman ProblemTraveling Salesman Problem

start

start Use well-known
Prim’s algorithm
or other favorite.

Use well-known
Prim’s algorithm
or other favorite.

10-39COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Traveling Salesman ProblemTraveling Salesman Problem
Consider a complete graph of the locations

i.e., each location connects to every other location

The minimum spanning tree is a subset of the
complete graph’s edges that forms a tree that
includes every location, where the total length of
all the edges in the tree is minimized.

1. Create a tree containing a single arbitrarily chosen location
2. Create a set S containing all the edges in the graph
3. WHILE (any edge in S does not connect two locations in the tree) DO
4. Remove the shortest edge from S that connects a

location in the tree with a location not in the tree
5. Add that edge to the tree

Use simple heap
data structure.

Use simple heap
data structure.

10-40COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Traveling Salesman ProblemTraveling Salesman Problem
From the root of the minimum spanning tree
perform a pre-order traversal of the tree.

Connect nodes in order visited. Solution can be at
most twice the best
path … but is usually
not so bad.

Solution can be at
most twice the best
path … but is usually
not so bad.

10-41COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Traveling Salesman ProblemTraveling Salesman Problem
Running time is O(n2) for n locations.

There are other variations of this problem … we
could spend a whole course discussing these types
of problems.

Can we use this algorithm practically ?

the triangle inequality may not hold since obstacles are
often in the way.

can still do a minimum spanning tree, but must replace
straight line paths with weighted shortest path links.

10-42COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Traveling Salesman ProblemTraveling Salesman Problem
Solution to TSP may yield invalid paths.

would have to replace point-to-point costs with shortest
path costs

10-43COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Traveling Salesman ProblemTraveling Salesman Problem
Can replace invalid segments with shortest path
segments:

Thick line replaces dotted
one. These can be time
consuming to compute !!

Thick line replaces dotted
one. These can be time
consuming to compute !!

10-44COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Traveling Salesman ProblemTraveling Salesman Problem
The solution to the traveling salesman problem
does not directly apply to our problem since paths
may be invalid.

Often a simpler, more practical, approach is a
better one.

+ easier to compute
+ can ensure complete coverage
- may end up with longer path

Simplest, most practical approach is to use the dual
graph of the triangulation.

10-45COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Visibility Search Paths

10-46COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Dual PathsDual Paths
Consider a robot with an unlimited range, omni-
directional sensor.

First, triangulate the polygon with holes:

Use a
constrained
Delauney
Triangulation for
best results.

Use a
constrained
Delauney
Triangulation for
best results.

10-47COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Dual PathsDual Paths
We can traverse the dual graph (using a Depth
First Search) as a rough path around all obstacles:

Robot visits the
center location
of each triangle.

Robot visits the
center location
of each triangle. From center location, the

robot can “see” the entire
triangle … and more.

From center location, the
robot can “see” the entire
triangle … and more.

10-48COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Visibility PathVisibility Path
As the robot travels along the dual graph, it can
actually “see” (i.e., search) a much larger area than
the triangles it passes through:

Many triangles
can be “seen”
(hence searched)
without having to
enter them.

Many triangles
can be “seen”
(hence searched)
without having to
enter them.

However, it is
difficult to keep
track of which
“parts” of the
triangles are seen
from other
triangles.

However, it is
difficult to keep
track of which
“parts” of the
triangles are seen
from other
triangles.

10-49COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

When robot travels between triangles it can:

- search along the way - search only when arriving
while traveling at the triangle centers

+ better coverage + less computation
- more computation - less coverage

Visibility PathVisibility Path

Most areas are
“seen” multiple
times from multiple
locations.

Most areas are
“seen” multiple
times from multiple
locations.

Some areas are
never “seen”
during travel.

Some areas are
never “seen”
during travel.

Some areas are
never “seen”
during travel.

Some areas are
never “seen”
during travel.

Some additional
areas are never
“seen”.

Some additional
areas are never
“seen”.

Some areas are
“seen” twice.

Some areas are
“seen” twice.

Some areas are
“seen” only once.

Some areas are
“seen” only once.

10-50COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Refining PathsRefining Paths
Recall that dual graph paths can be refined by
computing a shortest sleeve path:

results in a slightly modified area coverage

This area is no
longer visible
from the new /
shorter sleeve
path.

This area is no
longer visible
from the new /
shorter sleeve
path.

10-51COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Refining PathsRefining Paths
Combining all such refined paths leads to an
efficient path that will guarantee visibility of the
entire environment:

10-52COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Refining PathsRefining Paths
Can even trim (i.e., remove edges from) the path:

walk through the path, keeping track of which triangles are
completely covered along the way. Eliminate edges/vertices that do
not add to the path’s coverage.

Do you know
why we need
to keep this
vertex ?

Do you know
why we need
to keep this
vertex ?

10-53COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Safer PathsSafer Paths
For safety, we can first grow obstacles according to
robot model to allow valid paths that do not collide:

Points now
away from
obstacles to
allow for safe
robot traversal.

Points now
away from
obstacles to
allow for safe
robot traversal.

New points may be
added due to grown
obstacle restrictions.

New points may be
added due to grown
obstacle restrictions.

Some points may be
gone due to grown
obstacle restrictions.

Some points may be
gone due to grown
obstacle restrictions.

10-54COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Safer PathsSafer Paths
A safer/simpler approach:

place view locations at midpoints of triangulation
diagonal edges and connect viewpoints from edges on
the same triangle

Provides a
safer
clearance
between
obstacles.

Provides a
safer
clearance
between
obstacles.

10-55COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Safer PathsSafer Paths
Once again, trim edges by removing
ones that do not add to the coverage:

May also put
constraint that edge
must have certain
clearance from
obstacles.

May also put
constraint that edge
must have certain
clearance from
obstacles.

Merge triangles
that form
convex
polygons since
entire convex
polygon is
visible from any
point inside it.

Merge triangles
that form
convex
polygons since
entire convex
polygon is
visible from any
point inside it.

10-56COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Convex PiecesConvex Pieces
Of course, we can always merge triangles to form
convex areas before we search the graph

reduces need to trim off many edges later

The dashed edges are not necessary since
they cross polygons that are already reached
by other path portions.

The dashed edges are not necessary since
they cross polygons that are already reached
by other path portions.

10-57COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Convex PiecesConvex Pieces
How do we merge triangles into convex pieces ?

traverse dual graph using DFS.
build up convex polygon by adding new triangles one at a
time … if a new triangle “ruins” convexity, start a new
polygon

This triangle
cannot be
added since it
would destroy
the convexity
property.

This triangle
cannot be
added since it
would destroy
the convexity
property.

10-58COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

How do we determine if a polygon is convex ?

There are a variety of ways:

check that the line segment between
each pair of non-adjacent vertices does
not intersect any polygon edge.

check that each pair of consecutive
edges forms an interior angle ≤180°.

traverse the polygon CW and make
sure that each consecutive edge
makes a right turn.

Convex PiecesConvex Pieces

10-59COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Limited Direction VisibilityLimited Direction Visibility
What if the robot cannot sense omni-directionally ?

Recall that robot can turn at each
search point:

can be time consuming

try to minimize search locations

Alternatively, some robots are
equipped with head turrets
that can turn 360°.

10-60COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Searching With
Limited Visibility Range

10-61COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Limited Range VisibilityLimited Range Visibility
The problem changes when the robot has limited
sensing range:

Traveling inside triangle no longer
ensures complete visibility of that
triangle’s area.

Traveling inside triangle no longer
ensures complete visibility of that
triangle’s area.

10-62COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Recursively DecomposeRecursively Decompose
One option is to ensure that each triangle is small
enough to be covered by the robot’s range:

d

For each triangle that is not covered from its center
(based on robot’s viewing range d), split triangle into
smaller ones, recursively, adding any necessary edges.

For each triangle that is not covered from its center
(based on robot’s viewing range d), split triangle into
smaller ones, recursively, adding any necessary edges.

10-63COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Again, form path from dual graph:
more loops now
cannot trim vertices now, only edges.

Limited Range PathsLimited Range Paths

10-64COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Refining Limited Range PathsRefining Limited Range Paths
May trim as many edges as possible, provided that
the removal of the edge does not disconnect the
graph.

10-65COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Convex PiecesConvex Pieces
Again, we can merge into convex polygons first,
provided that the convex polygons are fully visible
from each edge:

This edge is
not needed
since whole
polygon is
visible from
the red vertex.

This edge is
not needed
since whole
polygon is
visible from
the red vertex.

10-66COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

Limited Range Visibility CoverageLimited Range Visibility Coverage
Result is that entire area is covered:

10-67COMP 4900A - Fall 2006 Chapter 10 – Coverage and Search Algorithms

SummarySummary
You should now understand:

How to compute paths that cover an environment

Different ways of covering an environment

How to compute a set of robot locations that see the
entire environment

A simple way to search an environment with robots that
have sensors with unlimited or limited range as well as
omni-directional or limited direction.

	Coverage and Search�Algorithms
	Objectives
	What’s in Here ?
	Coverage Algorithms
	Coverage Algorithms
	Coverage Algorithms
	Coverage Algorithms
	Coverage Algorithms
	Boustrophedon Coverage
	Boustrophedon Coverage
	Finding a Path
	Finding a Path
	Coverage Along a Path
	Coverage Along a Path
	Coverage Along a Path
	Coverage Along a Path
	Coverage Along a Path
	Other Coverage Ideas
	Circular Coverage Patterns
	Circular Coverage Patterns
	Circular Coverage Patterns
	Brushfire Decomposition
	Searching
	Searching
	Visibility
	Visibility
	Visibility
	Visibility
	Guard Placement
	Guard Placement
	Guard Placement
	Search Paths
	Traveling Salesman Problem
	Traveling Salesman Problem
	Traveling Salesman Problem
	Traveling Salesman Problem
	Traveling Salesman Problem
	Traveling Salesman Problem
	Traveling Salesman Problem
	Traveling Salesman Problem
	Traveling Salesman Problem
	Dual Paths
	Dual Paths
	Visibility Path
	Refining Paths
	Refining Paths
	Safer Paths
	Safer Paths
	Safer Paths
	Convex Pieces
	Convex Pieces
	Convex Pieces
	Limited Direction Visibility
	Limited Range Visibility
	Recursively Decompose
	Limited Range Paths
	Refining Limited Range Paths
	Convex Pieces
	Limited Range Visibility Coverage
	Summary

