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Multi-agent systems (MAS) are systems that consist of many individual

agents working together to solve a common goal e.g. large scale problems. Sensor

interpretation (SI) is a real world problem in which data is collected by a series of sensors

distributed throughout a target area. This data is then analyzed to determine which of the

known possible events has occurred. SI problems fall in the category of NP, and therefore

quickly become intractable as the number of input sensors or events grow. Due to the NP

nature of SI problems, solution methods are needed that can either decompose the problem

and/or find an approximate solution. One such approach is to decompose the SI problem

into smaller sub problems, and distribute them among multiple agents; this is known as

Distributed sensor interpretation (DSI).

In DSI a set of agents is tasked with processing the sensor data and

determining the most likely event that could have occurred. More often then not the agents



are not completely independent of one another. Due to this lack of independence it is often

necessary for the agents to communicate by exchanging data or local solutions, to achieve

their goal. The goal, and difficult part of designing DSI systems, is decomposing the

system in such a way as to create relatively independent subproblems thus reducing

communication and computation while keeping the accuracy of interpreting events high.

SI domains are often modeled as Bayesian networks (BNs), and the distributed

version of these systems can be modeled as distributed Bayesian networks (DBNs). The

most studied approach for decomposing BNs into DBNS is the multiply sectioned Bayesian

network (MSBN) framework. This framework focuses on exact probabilistic inference in

DBNs. Approaches such as in Y. Xiang et. al. [6, 7] divide the system using the idea of d-

separation. This approach performs well, as the resulting sets are as accurate as the original

system. However communication still becomes computationally infeasible as problems

grow larger. It is clear that approximation is needed in real world DSI systems.

This thesis investigated the effectiveness/feasibility using the concept of mutual

information (MI) to determine the appropriate ways to decompose an SI BN. By calculating

the MI between subsets of the BNs, we hope to find the subsets that share the least amount

of information. This knowledge can then be a guide for decomposing the overall BN into

largely independent subproblems. Largely independent means that only a minimal amount

of communication is required between the subproblems. With this style of decomposition



we aim to improve over the MSBN approach by adding decomposition flexibility through
approximation, while keeping the overall accuracy of the system high. The results are
promising, as most decompositions performed with a high degree of accuracy. This process
is sill exponential in nature, however, this thesis also describes some methods of
approximation that can be added to this technique to improve speed without greatly

affecting accuracy.
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CHAPTER 1

INTRODUCTION

Sensor networks are used for tasks such as collecting weather data, satellite

communication, determining network topologies, robot navigation, surveying, and also

have many military applications. This growing interest in deploying large-scale sensor

networks and the complexity of processing and communicating large amounts of data with

limited energy, has lead to a need for better, faster algorithms. Sensor networks focus on

processing data to determine what is occurring in the environment. In Artificial

Intelligence, this is termed sensor interpretation (SI). The multi-agent systems (MAS)

approach to distributed sensor interpretation (DSI) in large sensor networks deals with

complex trade offs between solution quality and costs. SI is an intractable problem in large

sensor networks, because finding the optimal result, known as maximum a postoriori

interpretation (MAPI), is an NP-Hard problem.

Often times distributed sensor network problems are modeled as Distributed

Bayesian networks (DBN). To accomplish the task of finding the MAPI, the agents, each

containing a section of the Bayesian network (BN), must exchange data or partial solutions

to achieve a high-quality globally consistent solution. Communication will typically be



necessary due to interactions among the agents subproblems as well as the agents having
direct access to only a subset of the global sensor data. However, communication is slow
and/or energy intensive, so it must be minimized.

Decomposition from an SI to a DSI problem is necessary for 4 reasons. First in SI-
problems the amount of computation required to interpret events grows exponentially with
the number of events that must be modeled. This means that it is important for each agent
to restrict the number of possible events it must model to a subset of the global events.
Second the more events an agent must model the more data evidence is needed. This
means that if an agent does not have the necessary data, communication will be necessary.
The result can be a drastic reduction in the speed of the system and the need for high
bandwidth network connections. The third reason that subproblems must remain small is,
the size of the message grows exponentially so communication can potentially grow
exponentially. This means that as the number of events grow, communication between
agents also grows exponentially. The fourth reason is parallelism, the ability for separate
agents to work on subproblems can greatly decrease the time for a system of agents to
arrive at a global interpretation. For these reasons it is important to find an effective way to
decompose SI problems into DSI problems.

The most studied approach for decomposing a large BN into a set of distributed

BN is the multiply sectioned Bayesian network (MSBN) framework. The MSBN



framework utilizes a concept known as d-separation to create DBNs that can perform the
exact same probabilistic inferences as in the original BNs. However, the d-separation
requirement severely limits the ability to decompose SI BNs, and will generally still be
impractical with large SI BNs. Because of the complexity of S, it is unlikely that any exact
approaches will ever be practical with large-scale problems.

In this thesis, we have investigated approaches for decomposing SI BNs that build
upon the basic MSBN framework, but result in approximations of the original BN. This
allows for greater flexibility in decomposing SI BNs, which can result in improved time and
communication performance, at a slight cost of solution quality. In Cheng et. al. [2] a
measure called mutual information (MI) was used to determine the structure of Bayesian
networks. We have adapted the MI for use in determining decompositions of SI BNs where
the sub-BNs are largely independent of one another. These sub-BNs can be used to produce
an MSBN-like structure (d-separation does not hold), which supports efficient approximate
DSI.

We have experimentally evaluated this approach on a large number of randomly
generated SI-type BNs. Because of the computational expense of generating and splitting
large BNs, we have limited the size of the original BNs to between 2 and 7 events, and
limited decompositions into two sub-BNs. Our approach appears to perform well for

smaller BNs and shows promise for large networks. The basic approach is exponential in



complexity, however sampling techniques will be discussed that could greatly reduce the
time needed to decompose large BNs.

Chapter 2 Is a review of the background knowledge needed to understand the work
being done. First is a review of distributed sensor interpretation. This section discusses the
difficulties of DSI systems. This section also explains how these systems can be modeled
as Bayesian networks.

Next is an explanation of MSBN's and a discussion of concepts such as sepsets, and
d-separation. These concepts allow a BN to be broken up into smaller components while
still having many of the same properties as the original system. This section will also
discuss the downfalls of these types of systems and how they can possibly be improved.

The next section of chapter 2 talks about the idea of Mutual Information. This
section will define this concept in great detail. We will also cover the concepts of
conditional mutual information and weighted average conditional mutual information. This
chapter will also discuss how these ideas can be used help decompose a BN.

Chapter 2 then discusses the topics of monotonicity, interpretability, and
decomposability. In this section an explanation of how these measurements are useful to
BNs is provided. Also in the chapter is a discussion of how these values can be calculated.

Chapter 3 discusses our actual experimentation. In this chapter, our algorithm for

decomposing BN will be described, along with the types of files that were generated and



why. Chapter 3 discusses the types of choices that were made, and the types of analysis
that were performed. This chapter also covers the system used to determine the accuracy of
our experiments.

Chapter 4 is an analysis of the results of our experiments. This chapter describes
the different factors that we used to measure our systems performance. This chapter also
discusses the effects of monotonicity, decomposability, and interpretability on our system.
The chapter will then discuss improvements our system has made over previous systems.
Next the chapter will discuss the speed of the algorithm and the problems this poses. The
chapter ends with a discussion of sampling techniques we have applied and their results.

Chapter 5 discusses possible improvements to our algorithm. Difficulties with large
data sets will be looked at, along with sampling techniques. This chapter mainly focuses
on how the speed of our algorithm can be increased.

The conclusion discusses the overall viability of our algorithm. Along with a

discussion of how our algorithm is generally useful, but needs improvement.



CHAPTER 2

REVIEW / BACKGROUND

2.1  DISTRIBUTED SENSOR INTERPRETATION

2.1.1 Cooperative Distributed Sensor Interpretation

Cooperative distributed problem solving (CDPS) is a subfield of MAS, where a
group of agents work together to divide and solve a given large-scale problem. One set of
problems that CDPS is appropriate for are Distributed Sensor Interpretation (DSI)
problems. In DSI the SI system is decomposed into a set of subproblems, these
subproblems are then divided up among a set of agents. The agents then work together
gathering and processing sensor data to determine which of a given set of events has
occurred in the environment.

DSI has many advantages over a single agent (centralized) system for SI. The first
advantage is convenience, as sensors are often scattered over a large area this model tends
to be more appropriate. Individual agents can be placed throughout the system to collect
data from nearby sensors, reducing the need to transmit data long distances. Another
advantage is redundancy. If one of the the agents or network links fail, the other agents can

still calculate which events are most likely to have occurred. This leads to another



advantage of DSI, graceful degradation. Because agents can be removed from the system
without greatly compromising the results, the system can gracefully degrade if a
catastrophic event were to take place. The greatest advantage of DSI systems over single
computer systems is time to solution. As SI problems are NP-Hard, decomposing the
problem up into smaller subproblems can have a dramatic effect increasing the speed at
which a solution can be obtained.

However, for a DSI approach to work, the problem must first be divided up into
smaller subproblems. This must be done in such a way as to limit the need for
communication between agents as much as possible. Communication cost is the biggest
flaw of DSI systems as computation is hundreds of times faster than communication and
requires significantly less energy. A successfully divided system will allow each agent to
compute its local solution with a minimum amount of communication, without sacrificing
the overall quality of the system.

2.1.2 Bayesian Networks

A common representation of SI problems is the Bayesian Network (BN). A BN is
made up of a series of nodes with causal links between them. Each node in the network
represents a random variable and has a conditional probability table based on its causal
links. These conditional probabilities determine the likelihood of certain values of the

node base on the values of the nodes on the other end of the causal links. Figure 2.1 is an



example of a BN with one of its probability tables shown.

El | E2[ DI

T T (0485
T F 10.93
F T [ 02
F F 0.8

Figure 2.1: Sample Bayesian Network and Probability Table.

In figure 2.1 E1 and E2 represent events in the system such as raining and windy.
D1 through D4 represent data from sensors. For example D1 could be a rain sensor, D2
could be a wind sensor and so on. The probability table shown to the left of the BN is for
sensor D1, it states, for example, that if E1 is true and E2 is false, then D1 has a 93 percent
chance of being true. The table shows the causal relationship between E1, E2 and D1. A
similar table exists for D2, D3, and D4. In general, direct links mean direct causation, the
standard set up is to have nodes higher up in the network cause nodes lower in the network.

The BN representation may seem simple, however, it can be used to model almost
any SI problem. BNs do not require binary events, however, for simplicity sake our
representation uses binary valued events. Should a system not consist of binary events, or

sensor data, it can still be represented by this type of system. For example, if an event is



either sunny or rainy it could be converted into two binary events: sunny (true and false)
and rainy (true and false). In this same manor, continuous sensor can be handled. A sensor
that ranges from 10 to 20 degrees with an accuracy of 1 degree could be represented as 10
different sensors ranging from 10 degrees (true or false) to 20 degrees (true or false).

2.2  MULTIPLY SECTIONED BAYESIAN NETWORKS, D-SEPARATION AND
SEPSETS

2.2.1 D-Separation

D-separation is a technique that can be applied to BNs using special properties of
the network. The d in d-separation stands for dependence, which is what d-separation
removes. A set of variables, Z is said to d-separate two groups of variables, X and Y, if the
two sets X and Y are independent conditioned on Z. This means that knowledge of X will
no longer affect your knowledge of Y once Z is known, thus X and Y are d-separated by Z.
D-Separation can occur when all information about X or Y is determined via Z and not
from any other variable or path in the network.

DX>Z->Y
D X<-Z<-Y
I X<-Z->Y
HhX>Z<Y

Figure 2.2: Possible BN path types.

In figure 2.2 we can see all possible link types between X and Y via Z. The paths in
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figure 2.2 do not have to be direct, meaning they can go through other variable along the
way, however, they do represent the only path from X to Y viaZ. In case 1, X has a causal
effect on Z and Z has a causal effect on Y, thus X is indirectly causing Y. This is the same
in case 2, however, Y is now indirectly causing X. In these two cases Z d-separates X and
Y, as once we know the values of the random variables in Z, X no longer has an effect on Y
and vice versa. This is also true in case 3, Z is a common cause of X and Y. For example,
if Z was Earthquake, X was John hides under his desk, and Z was Mary hides under her
desk. Then, the knowledge of John hiding under his desk should increase the likelihood
that Mary will be hiding under her desk. However, once it is known that there was an
earthquake, the knowledge of John hiding under his desk no longer affects the probability
of Mary hiding under her desk.

Case 4 is a bit different because Z is causally affected by both X and Y. Consider
the example where X is a dead battery, Y is no gas, and Z is car won't start. Knowing
batter charge tells you nothing about the amount of gas in the tank when you know nothing
about the ability to start the car. However, if the car won't start and the battery is not dead
this does increase the probability that the gas tank is empty. Thus, Z d-separates X and Y
until it is instantiated, when the values for Z are known Z connects X and Y and causes

them to be dependent.



11

2.2.2 Sepsets and Junction Trees
A junction tree (JT) is a concept from graph theory in which the graph can be

broken up into a set subgraphs connected via sepsets, similar to the model seen in figure
2.3. A sepset is a set of variables that lies between two subgraphs in a JT. A JT is valid if
it follows two properties, first every node in the original graph must be represented in the
JT, and second all subgraphs must be connected by sepsets containing elements common to
both subgraphs. The JT model can be used to represent BNs as they are simply directed
graphs. In a BN JT the purpose of a sepset is to limit the number of nodes or agents that
must communicate. Sepsets have special properties such as allowing for exact models of
the original system in the case of d-sepsets. A d-sepset is formed by the variables that d-
separate two portions of a JT. Sepsets can be used to divide a BN as shown in figure 2.3.
In figure 2.3, BN, BN,, and BN, are portions of the BN while the two squares represent
the variables that d-separate each portion. For changes in BN to affect BN, the
probabilities must be propagated via E, and E,. This means that all communication from
BN, to BN, must pass through the E,, E, sepset.

2.2.3 Multiply Sectioned Bayesian Networks

Multiply sectioned Bayesian Networks (MSBNs) are the most studied approach for

building and performing inference in distributed BNs. MSBNs are composed of a group of
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interrelated Bayesian subnets. Each subnet in the domain represents a single agent's
knowledge. These subnets are then organized into a hypertree structure shown in figure
2.3, connected with d-sepsets. The hypertree structure is essentially a JT with BN subnets
for nodes. This model allows for distributed computation and communication, while still
allowing for exact inference thus duplicating the original BN. Communication in MSBNs
is done by sending updated probability vectors or unnormalized potentials via the sepsets.
For example if BN, was to communicate with BN, This is done in three steps. First the
sepset E,, E, probabilities (or potential) is saved. Second the new sepset potentials are
computed using data from BN,,. Third using the old sepset and new sepset potential the
potential of BN is then updated. After this step BN, effect on BN, is complete and the
message has been passed. For more information on this procedure see section 3.8.3 and

Xiang et al. [5]

Ep.Ez

Figure 2.3: An MSBN with corresponding sepsets.
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The main problem with traditional MSBNSs is the sepsets must d-separate the
corresponding subnets. D-separation allows for exact approximation, however, greatly
limits the way that BNs can be decomposed. Also D-separation often leads to inefficient
systems that have large communication costs. This is due to the communication grown
exponentially with the size of the sepset. An example of how d-separation can perform
poorly can be seen in section 3.1. It is clear from this that some form of approximation is
necessary. Our approach uses similar DBN model, however, focuses on approximation as
opposed to exact inference.

2.3 MUTUAL INFORMATION AND VARIATIONS
2.3.1 Mutual Information

In probability theory, mutual information (MI) is a measure of the mutual
dependence between two sets of random variables. The most common unit for MI is the

bit. The MI of two discrete variables X and Y is defined as follows:

)= > p(x,y)log, ’(’)(:)( 2 ) @1

yeYy xeX

p(y)

where p(x,y) is the joint probability of x and y occurring and p(x), p(y) are the marginal
probabilities of x and y.
In general, MI measures the amount of information shared by X and Y. Itis a

measure of how much information about one of these variables reduces uncertainty in the



14

other. This means that if X and Y are independent of one another, then knowing X should
tell you nothing about Y. Thus in this case the mutual information between X and Y would
be 0. Conversely, if X and Y were the same variable, then knowing X would reveal all
information about Y. In this case the MI is the total about of information that can be
conveyed in bits. So if X =Y and X is 4bits, then the I(X,Y) is equal to 4bits.

2.3.2 Conditional Mutual Information

Ml is a good way of calculating the importance of one variable to another, however,
due to the nature of independence relations in BNs and our goal of dividing events this
calculation for MI is inappropriate. In our system, the events are independent if no data is
known. This means that the MI between event 1 and event 2 will be 0 unless some data is
known. This brings us to concept of conditional mutual information (CMI). CMI uses
conditional probability's in its calculations to add the effect of the conditioning the

relationship of the two sets of random variables. CMI is computed as follows.

1(X,YIC)=2 2. p(x,ylC)log,

yeY xeX

2.2)

p(x,ylC) )
p(x|C)p(y|C)

where C is a specific instantiation of our set of conditioning variables and p(x,y | C) is the
conditional joint probability of x and y, or the probability that x and y occurs given C.
p(x | C) is the conditional probability of x occurring given C. This calculation for MI takes

into account the affect of the data on the probability of the events. CMI, although better
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than MI, does not give us a full picture of the relationship between events in our system.
This is due to the fact that it allows for only one possible set of data.

2.3.3 WEIGHTED AVERAGE CONDITIONAL INFORMATION

In our system, there are 2¢ possible data combinations, where d is the number of
pieces of data, or sensors. Therefor, to calculate the overall effect on one event on another
in our system we need a way of computing the CMI over all possible data combinations. To
accomplish our goal we created the idea of weighted average conditional mutual
information (WACMI).

WACMI is a way of computing the average CMI between two events given
all possible data combinations, weighted by the probability of each. In DSI, certain data
combinations occur more frequently then others. This means that those data combinations
are going to be affecting the MI between the two events more often therefore should be

weighted as such. WACMI takes the weighting into account and is computed as follows:

p(x,ylc)
p(x|c)p(ylc)

I(X,Y|C)=2 p(c)| 2. 2. p(x,Yylc)log,

ceC xeX yeY

(2.3)

where p(c) is the probability of current instantiation of the conditioning data, p(x,y | ¢) is
the joint probability of x and y given the current data set, and p(x | ¢) is the marginal
probability of x given the current data set.

Now we have a way to calculate how much of an effect one or more events has on
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another in an SI BN. We can use WACMI to break a network into subgroups that have little
or no mutual information. If we could find two subgroups of events and data such that
WACMI is low, this would mean that each sub group should have little effect on the other.
Therefor, should be able to be computed individually with only a small amount of
communication. Also, because the groups do not convey a significant amount of
information about one another, the decomposed system should be a decent approximation
of the original system.

WACMI does have one major drawback, it becomes computationally infeasible as
the system grows larger. This is due to the nature of how it is calculated. WACMI must run
though all the possible 27 data sets, where d is the number of data sets. Then for each of
these data sets it must also run through 2° possible event combinations, where e is the
number of events. The number of combinations makes the run time for WACMI O(2")
or exponential, where n is the number of events plus the number of data. This means for
WACMLI to be applied to larger systems it will have to be approximated. We will discuss
approximation via sampling at the end of Chapter 4 and in Chapter 5.

24  MONOTONICITY, INTERPRETABILITY, and DECOMPOSABILITY
2.4.1 Interpretability

In a BN we are usually concerned with predicting the most likely set of events given
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our data, or MAPI (formula 2.4).

MAPI (D)= ARGMAX P (E [D)] 2.4)
However, the most likely set of events may still have only a small probability. For example
in a BN with 4 events there are 2" possible event combinations, this means the most likely
combination can have a probability of just over 1/16. So if the MAPI has a probability of
1/10 this would mean that even if we pick the most likely event we are still incorrect 90
percent of the time, this is unacceptable in real world systems. Real systems must produce
accurate results much more then 10 percent of the time. To make sure that we do not have
BNs that have low MAPI probabilities we must look at there interpretability

Interpretability is an overall assessment of how well the BN can perform in ideal

conditions, given all of the information e.g. how likely are the MAPI. Interpretability is a
weighted average of all the possible MAPI given the data (formula 2.5). This is then
normalized, i.e., the effect of the all null data set is removed. This is done because in most
real systems the data set were nothing is occurring, happens quite frequently and can skew

the results.

Interp=7)" P(D,)P(MAPI(D,)|D,) (2.5)
D, '

As the MAPI is the best a system can perform, we will only be looking at systems

that have a high interpretability (=90 ) Interpretability is also the measure by which we
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will compare our system, and our other variables such as decomposability and
monotonicity.

24.2 Event Decomposability

Event decomposability measures how accurately events can be identified when
considering the events independently. Event decomposability gives a general idea of how
well the overall problem of, identifying the complete set of events that occurred, can be
broken down or decomposed into subproblems. These subproblems each then identifying

whether individual events occurred. Event decomposability is calculated as follows:

J

i

EDecomp=)_ P(D;)U ¢(P(E;|D;), MAPI(D;), E ) (2.6)
D, ;

¢(X,Y,Z) returns 1 if (X >.5 and Z is a member of Y) or (X <.5 and (not Z) is a
member of Y) otherwise it returns 0. Event decomposability is then normalized to remove
the effect of the null data set.

If the event decomposability is low, this means that the system performs poorly
when events are not considered together. For this reason, we will be using BNs that have
high decomposability (over 80 percent). This limits the types of systems for which our
technique can be used for, however, it is a realistic measure that must be taken.

2.4.3 Monotonicity

Monotonicity gives a sense of the ability for accurate interpretation of events in a
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BN (mean MAPI) with only part of the data. This represents what would happen when a
BN is distributed among multiple agents. Domains with a high monotonicity should be
easier to decompose, i.e., produce more accurate interpretations with less communication.

The monotonicity as defined in Carver & Lesser [1] is calculated as follows:

E(MAPI(d ), MAPI(D;))

|7l
D d,=D, 21

§P<D,->

2.7

Where T is the number of possible data types, D; ranges over all possible combinations of
data, d; ranges over all non-empty subset of D;, and E(X,Y) =1 if x =y else it is 0.
Monotonicity tells us how well the BN preforms in general with only part of the
data. BNs that have a low monotonicity will generally require more communication of data
when decomposed. The one major drawback of monotonicity is, its calculation has
factorial growth rate. The growth rate is due to the fact that it is calculated by testing every
possible set of the data. This factorial growth rate means that to calculate monotonicity

approximation techniques must be used.
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CHAPTER 3

BAYESIAN NETWORK DECOMPOSITION

3.1 PREVIOUS WORK AND SYSTEM GOAL

Successful applications of multi-agent systems to SI usually requires that we be able
to decompose the problem into smaller subproblems. These subproblems can then ideally
be solved by individual agents (or groups of agents) with as little communication as
possible. The purpose is to make systems that are more robust and have a faster time to
solution. In previous work done by Y. Xiang et. al. [5] this was done by converting the
system into an MSBN using d-separation. This process exploits the structure of the
problem to try and gain efficiency when computing exact probabilities. The main problems
with Xiang's approach is it only works well on sparse networks. As networks become large
and well connected the cost of communication for computing exact probabilities becomes
far to great [6].

Consider the fully connected BN with four events in figure 3.1. Suppose we wanted
to decompose the network by breaking it in half, so each agent was responsible for
interpreting two of the four events. Event dependencies (via the data) would mean that the

sepset would have to contain all four events, as would each agent's sub-BN. While the
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agents could process their local data in parallel, both the cost to process each piece of data

and the cost to communicate probability vectors would be exponential in the number of

events in the original BN. Thus, the resulting MSBN would have little or no efficiency

improvement.

El, B2, B3, E4
S0y
s

El, E2, E3, E4

El, E2, E3, E4

Figure 3.1: A fully connected BN and its resulting MSBN
Another approach is to approximate the network, which can be seen in Shen and
Lesser [2]. In their paper Shen and Lesser suggest splitting up a BN by events, and then
using the prior probabilities to marginalize the data. To accomplish this, they simply
created a new BN for each event and all data connected with it (figure 3.2). To eliminate
the effects of the other events and data on the current BN they used the prior probabilities
from the original BN to marginalize out the effect. As shown by Carver and Haan [4] this

approach performs poorly as the systems become larger and more connected. For example
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2-4 non-fully connected BNs performed with an average accuracy of 98 percent, whereas a
fully connected 6-12 BNs performed with an average accuracy of only 31 percent. This
degradation is due to over approximation. The system they chose for decomposing the

BN's does not take into account the strong bonds between much of the events and data.

Figure 3.2: Fully connected BN and resulting Event BNs

Our goal was to create a system that could effectively use approximation, while still
achieving accuracy close to that of the MSBN systems. We wanted to create a system that
could be used to decompose a BN representation of an SI problem. The decomposed
subnets could then be worked on by individual agents (or groups of agents) with a
minimum amount of communication. The result would be a network that is an effective
approximation of the original network, but with a faster time to solution and low

communication needs.
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3.2 IMPLEMENTATION DIFFICULTY

Care must be taken in developing algorithms for finding appropriate
decompositions, since “brute force” approaches to finding optimal decompositions are
exponential. In our model of an SI system we have a two layered BN with events in the top
row that have causal links to sensor data in the bottom row. When analyzing properties of
such a system, one must notice that there are 2° possible data combinations and 2° possible
events combinations. So traversing over every possible combination quickly becomes
infeasible as the system grows larger. This means that any techniques that are used must
either not look at all these possible combinations, or have a potential to be sampled or

approximated.

3.3 CODE METRICS AND SYSTEM SPECIFICATIONS

Code was written to generate, decompose, and assess BNs. All system code was
written using the Common Lisp language and run under Steel Bank Common Lisp for the
Linux platform. Analysis code was written in Common Lisp, and Perl under Linux. Also a
Bayesian network library previously created for simulation and analysis in Carver and
Lesser [1], was used as the base for the system. All other code was original and written by
the author. The original code consists of approximately 1000 lines of Common Lisp code

in 24 functions and 4 files, and 290 lines of Perl code in 4 files. The whole system was run
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on two 64bit AMD machines running Fedora core 5.

34 EXPLANATION OF THE SYSTEM

3.4.1 System Model

The original SI model that our system takes in as input is represented as a BN
(figure 2.1). This model consists of two levels, a level of events, and a level of data. The
events in this model have causal links with the data. The target model is a type of DBN
similar to a 2-agent MSBN. It consists of two individual subnets divided by a sepset (figure
3.3). All communication between the two subnets is done via updating the sepset
probabilities. However, our network is not decomposed by finding variables that d-separate
the subnets as this is far to inflexible. Instead, we use a calculation we have termed
weighted average conditional mutual information (WACMI), which was presented in

section 2.2.3.

Figure 3.3: Junction Tree style model used after decompositions
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3.4.2 Why Use Weighted Average Conditional Mutual Information

The concept behind using WACMI is this: subnets that have low WACMI should
have little effect on one another. As a result the subnet/interpretation subproblems should
be able to be solved independently, or with little communication. MI is the amount of
information one set of variables give about another. In a system using d-separation the MI
of the two subnets would be zero if knowledge of the sepses was known. Hence why
systems base on d-separation have many of the properties they posses. However, unlike d-
separation we are not limited to one decomposition, we are free to choose any
decomposition that has a low MI.

Our system cannot use the simple MI (formula 2.1) to divide the BN, as the events
in a two level SI model are independent without knowledge of the data. This means that we
must look at the MI between events conditioned on the data (formula 2.2) so CMI is
required. We must also take into account the fact that there is not just one possible data
combination that affects the MI between events. In doing so, we must take a weighed
average of the CMI over all of these data combinations. The purpose of WACMI (formula
2.3), is to give an overall picture of the amount of interaction between two sets of events.

3.4.3 Generating Bayesian Networks

Decomposition techniques were tested on SI-type BNs with appropriate properties,
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which were randomly generated. Two styles of BNs were used, joint BNs and independent
BNs. Joint BNs have an arbitrary conditional probability table (CPT). Independent BNs
are different from joints in that they use a noisy-or model for their CPT. This model
reduces the number of probability needed to represent the BNs. Independent BNs represent
a situation in which each event can independently cause a piece of data to have a certain
value. To generate joint BNs we used a function that took as input, the size of the BN that
need to be generated, the minimum allowed value for interpretability, and the maximum
number of trials. An example input would be 5-10, 90, where the first set represents the
number of events and data, the second number represents the minimum accepted value for
interpretability. The function then randomly generates BNs most BNs generated are fully
connected. Fully connected means that all events are connected to all data. Then, once the
BNs are generated the function assesses their interpretability. If the value is above the
given minimum the function then tests the monotonicity of the BN. At this point it writes
the BN out to a file named based on its interpretability and monotonicity. Independent
After all the BNs are generated one final analysis is performed. A function is run
that tests all the BNs decomposability. The decomposability is written into a file, and BNs
with a low decomposability (< 80 percent) are discarded. The resulting BNs have a high

(> 80 percent) interpretability, and decomposability.
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3.4.4 Determining the Best Decomposition

The steps described next can be seen in figure 3.4. To decompose the system we
first split the events into two groups, looking for the split that has the smallest WACMI. The
resulting event groups are the start of our subnets. Next we look at all the possible data
groupings with the previously mentioned event groups, and pick the grouping that has the
highest CMI. The reason we choose the highest CMI is because large CMI values mean
that the data has a strong correlation with those events.

Now that we have two subnets each comprised of some portion of the data and
events, we must choose the best sepset. The sepset group is chosen by looking at all
possible event groups up to a given size, and finding the group that has the highest WACMI
with both subnets. This group is the sepset.

All members of the sepset must be contained in both subnets, so they must be added
to the subnets any subnet that does not contain them. The size of the sepset is limited due
to the fact that we only want a small portion of the events in the sepset. More information

on the exact s used for the decomposition process is listed in section 3.5.
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Original Bayesian Network

OlIONNOO

Step 1) Break the events into the two groups with the smallest MI

Step 3) Find the set of events that has the largest MI with both groups. This is the sepset, all members of the
sepset must be in contained in both groups

Figure 3.4 Steps of WACMI Decomposition

3.5 ALGORITHM

3.5.1 Conditional Mutual Information & Maximum Mutual Information

When calculating CMI (algorithm 3.2) it is possible that P(X,Y | C), P(X | C), or

P(Y | C) could be zero. In the first case the value for MI cannot be computed, as we would
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have the log of zero. In the last two cases we have a division by zero error. In all three

cases we need anther calculation for MI. This is where the maximum mutual information

(MMI) comes in. The maximum value for MI is determined by the smallest number of bits

in either set, and is then further limited by the probability of that set occurring. The largest

amount of information a group of variable can convey is the total number of bits it can

represent. Also when calculating MI each of the sets in the summation is weighted by the

probability of that set occurring. This is the reason MMI is calculated the way it is. MMI

is represented in algorithm 3.1 in the figure X and Y are the groups of events that we are

trying to determine the MI for, C is the set of data those events are conditioned on, and

Bits(X) returns the number of bits represented by the set X.

input: X, Y, C
return Minimum(P(X | C) Bits(X), P(Y | C) Bits (Y))

Algorithm 3.1: Maximum Mutual Information (MMI)

Conditional Mutual Information (CMI) is needed in the computation of WACMI

and for the decomposition of our system. CMI is calculated by computing the MI using

conditional probabilities. CMI is algorithm 3.2, X and Y are the events, and C is the set of

data on which the probabilities are conditioned.
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input: X, Y, C
MI=0
for all x in X
forallyinY
ifPxIC)=00orPx|1C)=00rP(x,y I C)=0
MI = MI + MMI(x,y,C)
else
MI=MI+Px,y | C) *log, {P(x,y |C)\ [PxIC) *P(y | C)]}
return MI

Algorithm 3.2: Conditional Mutual Information (CMI)

3.5.2 Weighted Average Conditional Mutual Information

Weighted Average Conditional Mutual Information is the most important
measurement in our system. Looking at its algorithm (algorithm 3.3) it looks easy to
calculate, however, it must be noted that for every possible data set, c, it also makes a call to
CMI which then runs through every possible set of X and Y. This makes the computation

for WACMI very costly meaning we will want to reduce the use of the formula or find a

input: X, Y, C
WACMI =0
for all cin C
WACMI = WACMI + P(c) * CMI(X,Y,c)
return WACMI

Algorithm 3.3: Weighted Average Conditional Mutual Information (WACMI)

way to perform sampling on it. More on sampling WACMI is discussed in Chapter 4.
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3.5.3 WACMI Two Agent Split With Sepset

The core algorithm in our system is algorithm 3.4. This is the algorithm that when
given a BN, will return the best possible split and sepset. This algorithm works by looping
over all possible event and data combinations finding the two subnets that have the
minimum MI. It will also determine the event with the highest MI among the two groups
and return that event as the sepset. With this information the original BN can now be split
and tested.

3.6  WACMI Two Agent Split Variations

3.6.1 Unused Variations

When first designing the algorithm to split the data using WACMI, we tried
different variations on measuring the MI. One issue that was the most trouble was
determining the best split for the data. There are many different ways the MI for computing
the data split can be measured. The first variation we considered was splitting the data in
the same fashion as we divided the events. However, after the split has been determined we
then calculate which of the two groups of data have the highest MI with the first group of
events. These two are then grouped, and the only remaining choice for the rest of the data

is to be grouped with the other set of events. This variation has the advantage that



input: B, S
E =B->Events D =B->Data
NumE = 2"1 NumD = 2°-1
BestSplit =0
CurWACMI =0
MinWACMI = highest positive number
{Determine least mutual event split}
fromi=1to NumE/2
SubE = the subset of elements in E represented by i in binary
-SubE = the elements of E not in SubE
CurWACMI = WACMI(SubE ,-SubE, D)
if CurWACMI < MinWACMI
BestSplit =i
MinWACMI = CurWACMI
{Determine most mutual data split}
MaxWACMI = lowest negative number
CurWACMI =0
BestDataSplit =0
SplitE = the subset of elements in E represented by BestSplit in binary
-SplitE = the elements of E not in SplitE
from j =1 to NumD
SubD = the subset of elements in D represented by j in binary
-SubD = the elements of D not in SubD
CurWACMI = WACMI(SplitE, SubD, NIL) + WACMI(-SplitE, -SubD, NIL)
if CurWACMI > MaxWACMI
BestDataSplit = j
MaxWACMI = CurWACMI
{Determine the most mutual one element sepset}
CurWACMI =0
BestSepset =0
MaxWACMI = lowest negative number
SplitD = the subset of elements in D represented by BestDataSplit in binary
-SplitD = the elements of D not in SplitD
forallein E
CurWACMI = WACMI(e, SplitE, SplitD) + WACMI(e, -SplitE, -SplitD)
if CurWACMI > MaxWACMI
BestSepset=¢
MaxWACMI = CurWACMI
reuturn SplitE, SplitD, BestSepset

Algorithm 3.4: WACMI 2 Agent Split With Sepset

32
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only one of the event groups must be looped over. This variation was not chosen as it did
not yield good results. This is due to the fact that the second subnet gets stuck with the
leftover data that is not matched to the first subnet. This means that it often times does not
perform as well.

Another variation we considered for measuring the MI of the data split was to take
into account the MI between the data sets. To achieve this, you must loop over all possible
data combinations and compare the MI of the data and events just as in algorithm 3.4.
However, to perform this calculation you must subtract the MI between the data sets from
the current value for MI. The advantage of this method is it results in a more accurate
value for the MI of the subnets. This is because the current method does not look at how
the two data groups might affect one another. The disadvantage of this variation is it
requires computation of the WACMI between the two data groups. We decided to not use
this variation as it did not give a notable improvement to the overall results, and caused a
significant increase to the runtime of the algorithm.

Yet another variation we considered for measuring the MI of the data split was to
condition the calculations over all of the data. The current method only conditions the
WACMI of the data/event groups over all possible values for the data in that group. The
reason we decided not to use this method is because, once again, it did not add a significant

increase in results. However, the method does increase the runtime of the algorithm.
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3.6.2 Used Variations

The main variation to the algorithm that is currently in use and will be analyzed in
chapter 4, is finding the best even event split. This variation is necessary since often times
the best split will only separate off one of the elements. This is not a large enough split to
be practical in larger systems. This is a simple variation to the algorithm and can decrease
the run time as it reduces the number of sets that must be looked at. To accomplish this
algorithm 3.4 must be changed in the following way. When looping through all the sets of
data analyze only the sets that are of approximately equal size. Then the resulting output
will be the best equal split of the BN.

Another variation that is also in use is adding the possibility for larger sepsets. This
was needed when we began to test larger BNs as a one element sepset is not sufficient. To
accomplish this, the algorithm, when choosing sepsets must loop over all possible event
sets of the given size or smaller. This increases the runtime of the algorithm as it must now
loop over sets as opposed to individual events. However, this is a necessary evil for larger
BNs.

3.7 WACMI Issues

When computing WACMI we came across two problems that were not well defined

in the literature. The first problem, is the question, what is the maximum value for M1?
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The second problem occurs when any of the probabilities in the calculation for MI become
zero. The first problem occurs when the two sets are identical. This problem was easy to
solve upon realizing that the largest amount of information any set can convey is its size in
bits. The second problem is a bit more difficult, when taking the log of infinity or dividing
by zero the results are undefined. The choices are clear, the value will either be the
maximum possible value, or zero depending on which grows faster in the formula. We
solved this through empirical means, running the system with both values and testing which
performed better. Overall, we determined that setting the value to the maximum was best.
This generated better results.

3.8 TESTING DECOMPOSITIONS

3.8.1 Splitting the Bayesian Networks

After generating the BN and running the WACMI split algorithm and its variations,
we now know our best and equal problem decompositions with and without sepsets. We
must now split the BN, using the the outputs from the above algorithms. The outputs are as
follows: best split, best split with a sepset, best even split, and best even split with a sepset.
Each of the outputs is then fed into an algorithm that splits the BNs into two files, adding
the sepsets to both BNs. The events and data are written to their corresponding files using

their marginal probabilities.
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3.8.2 Output Files

After generating the files and computing the decomposability, monotonicity, and

interpretability the result is three files. One file contains the BN, one file contains the

decomposability of the BN, and the final file contains the monotonicity and interpretability.

Then the BN is run through the WACMI decomposition algorithm and then the splitting

algorithm. The result of this is an additional eight files. These eight files consist of the the

BN for agent one and agent two, for all four types of splits. The four types, again, are best

split, best split with a sepset, best even split, and best even split with a sepset. The format

of these files can be seen in figure 3.5. Contained in each BN file is all the information

needed to represent the BNs for each agent. At the top of the BN file it shows what events

and data the agent is responsible for. The files also contains the prior probabilities of the

events and the conditional probability tables for each of the pieces of data.

3.8.3 Testing Performance

To test the performance of our decomposed BNs we used a function that emulated a

two agent junction tree style DSI (figure 3.3). First each agent processes its local data e.g.

the data specified in its subnet. Second the resulting event probability vector is passed via

the sepset to the other agent, simulating communication. This is the join tree model for

message propagation. Third each agent integrates the received vector message. This is
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done by multiplying the vector's elements with the corresponding elements of the agent's
event probability vector. Fouth the agents determine the best interpretation for each event
in there subnet. In interpreting each event, the event is considered to have occurred if its
resulting (conditional) probability is greater than 50%, else it is considered to have not
occurred. Fifth, the resulting values for the events are compared to the values for the same
events in the MAPI given all the data. The probability that the system would produce the
same event interpretations as the MAPI is then returned as the overall performance of the

system.

S

(E3)
(D6 D7)
(E3)

joint
S(E3.01)

joint
D6 (E3) (.19 41)
joint
D7 (E3) (.38.72)

Figure 3.5: Sample BN file for an Agent
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CHAPTER 4

ANALYSIS

41  MANAGING DATA

The results of running our system on over 1600 BNs, each resulting in 14-16 files,
was over 22000 data files that had to be analyzed. To begin to comprehend what was going
on with all of this data, a system was needed to sum up the information. To this end three
Perl scripts were written.

The first Perl script took two inputs, a percentage to be ranked as good, and a
percentage, below which, the decompositions was ranked as bad. The values that we used

were 90 percent and 80 percent. Any decomposition that performed from 80-90 percent was

ranked as average. The script then went through every data file in a given folder recursively

and summed the data into four files.

The first file is a count file that gives the overall performance percentages of the

data. The other three files are labeled good, average, and bad. They contain in a shorthand

format the corresponding data for all the BNs that were ranked in that category. Examples

of these files can be seen in figure 4.1 and 4.2. In figure 4.2 we can see that each BN is

placed in the file labeled with its location, and contains both normalized and unnormalized
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values for all four of the different decompositions.

Total number of networks: 916
Good >=90%

Bad <= 80%

Good count: 686

Good percent: 74.89%
Average count: 151

Average percent: 16.48%

Bad count: 79

Bad percent: 8.62%

Figure 4.1: Example of the Count Summation File

/cdps/mynetworks/Fconnected/6-12 ()()()()()())/j6-12-19-output.data

bs (0.9109014913056876d0 0.9110837041950143d0 0.9998000042273968d0)
bss (0.9063995569898358d0 0.906580869331225d0 0.9998000042273968d0)
es (0.7515419744922072d0 0.7516923097764608d0 0.9998000042273968d0)
ess (0.7575302328159917d0 0.7576817659661635d0 0.9998000042273968d0)

Figure 4.2: Example of one BN from the Good Output File
The next Perl script was designed to recursively parse a folder and convert all the
data files into one flat file containing a human readable format. An example of this results
file can be seen in figure 4.3. Using this file it is now easy to look at all performance

values in one place and compare them to one another.

folder Il name |l type lldecomp |l monotoll interp Il bs Il bss Il es Il ess |
search-joint-7-14-1 Il j7-14-2 |l joint I 0.9784 1 0.8285 Il 0.9209 II 0.8828 I 0.8797 Il 0.7456 Il 0.7601 I
search-joint-7-14-1 1l j7-14-1 Il joint II 0.9817 Il 0.8426 I 0.9241 110.7296 1l 0.7334 11 0.7859 Il 0.7847 |l

Figure 4.3: First Three Lines of a Results File
The last Perl script was designed to allow the information from the results files to be

entered into a spreadsheet application. The Perl scripts input was a results file, it then
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converted the results file into a comma delimited list containing the exact same

information. The new comma delimited file was then entered into a spreadsheet to allow

for further analysis and the creation of graphs.

42 PERFORMANCE

4.2.1 Summary of Performance

Overall, the decomposition method performed well. Of the 916 randomly

generated, BNs ranging in size from 2-4 to 7-14, 91.74% had an accuracy at the average

level (80%) or higher. The break down is as follows: 686 BNs (74.89%) performed with an

accuracy higher then 90%, 151 BNs (16.48%) preformed with an accuracy between 80%

and 90%, and only 79 BNs (8.62%) performed with an accuracy below 70%. Looking at

all 1646 BN, including those that do not have high values for decomposability,

monotonicity, and interpretability, 84.26% performed with an accuracy of 80% higher.

4.2.2 Best Split vs. Even Split

The more important value to analyze is even split with a sepset, as it is the most
useful. Looking at figure 4.4 we can see that, once again, the majority of the
decompositions performed above 90% and very few BNs performed less than 80%.

Figure 4.4 is a graph of sorted even split and corresponding best split decompositions with

sepsets. The BNs range from 2-4 to 7-14 in size. Larger networks will not be possible until
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sampling is introduced. Sampling is discussed more later in the paper.

Figure 4.4 also shows the relationship between best split and even split. Best split
in almost all cases performs better then even split. Figure 4.5 shows this relationship in
another way graphing each BNs even split and best split. As you can see, they both follow
the same general upward trend. However, this graph makes it easier to see that although the
DBN:Ss resulting from best split, on average, perform with a higher accuracy, they have
many lower values. This is in contrast to the DBNs resulting from the even split which
have no accuracy's lower than 58%. The reason that even split DBNs have less deviation is
due to the fact that the data and the groups are evenly spread among the two subproblems.
In the best split case, many times one of the subproblems will have significantly less data
then the other. The lack of data causes that subproblem to perform with a lower accuracy,
the resulting poor performance then brings down the accuracy of the whole system.

This is what we would expect to see as best split DBNs will have the same or higher
MI value, thus, should result in a better overall accuracy. However, even split decomposes
the system in such a way as to evenly distribute the data. This allows both subproblems a
significant portion of the data, allowing for less varied results.

4.2.3 Sepsets vs. Non-Sepsets

Sepsets overall did not greatly improve the accuracy of the system. This was

unexpected as they allow for communication, i.e., more accurate probabilities. Figure 4.6
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shows this, in the figure we can see that best split with a sepset in almost all cases performs
almost equal to the case without a sepset. Sepses do help some, if we note the range of
each of the measures we can see that best split has values as low as 12% accuracy where,
when a sepset is added our lowest value becomes 34%.

If we look closer at figure 4.6 we see that a lot of the values fall on the horizontal.
This means that adding a sepset did not improve the accuracy. This is most likely caused
by two factors. The first factor is how the best split is divided, often times most of the
events and data end up in one of the subnets. The larger subnet in the system, affects the
performance of the system to a greater degree, simply because it has more events to predict.
When a sepset is added in this situation it does not greatly increase the amount of data
affecting the larger subnet. Because of this, it does not affect the outcome to a large degree.
If we look at figure 4.7 (Even Split) we can see that adding a sepset affects the outcome to a
larger degree than in best split. This result is because each subnet has only half the data,
unlike best split. Thus connecting them adds a larger amount of information about the data
to each subnet, and this causes the accuracy to increase to a larger degree.

The second factor is sepset size. The fact that adding sepsets does not greatly
improve the results may mean that the sepsets are too small. Larger sepsets allow for more
information to be passed between the subnets. Thus, increasing the sepsets in future trials

may improve these results. In general these results mean that we decomposed the system in
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an effective way almost eliminating the need for communication. However, this result

could be bad as in the future it will almost certainly be necessary for communication.

424 Size

Size is another factor that affects the performance of our system, as BNs grow larger

their interactions grow more complex. Figure 4.8 shows a graph of the average best split

and even splits with sepsets performance graphed against the size of the BN (events+data).

Figure 4.8 shows that as size increases average performance decreases. The graph shows a

major decrease in performance as the size increases. This, however it is not quite this

simple. There is one major issues to note with the graph in figure 4.8. There is

significantly more data available for the BNs of sizes 9 through 14 than of the sizes at

either end of the graph. This means that the values in the middle show a much more

accurate picture then the end values. The reason for this is 2-4 BNs or size 6 are too small

to tell us much information, while BNs of size 6-12 and 7-14 (size 18 and 21) are too time

consuming to run in large quantities.

While there is a downward trend, it is not quite as drastic as figure 4.8 shows. If we

look figure 4.9, we can see all the data points graphed not just the averages. Figure 4.9

shows all the data sorted by size, i.e., the size of the BNs increase in groups from left to

right. The graph does not show the sizes of the groups, however this is not important for

what we are trying to discern. Looking at the graph we can see that the majority of the
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decompositions performed with an accuracy over 90% across all sizes. This shows that
although figure 4.8 is accurate in showing the downward trend, it is skewed by the number
of BNs comprising the averages. This, for example, means that the 7-14s performance
average is affected to a larger degree by its low accuracy values.

4.2.5 Effects of Monotonicity, Interpretability, Decomposability

Decomposability, Interpretability, and Monotonicity are correlated with
performance. However, they are inherent to the BN model and cannot be changed to affect
performance. Once these values approach 80%, they then appear to no longer have an
effect on the BNs. If we look at figure 4.10 we can see a general upward trend in the
performance as decomposability increases. Figure 4.10 shows a graph of all of the fully
connected BNs not just those that have decomposability over 80%.

This same trend can also be seen with Interpretability, but it is not noticeable with
monotonicity (figure 4.11). Figure 4.11 shows that as monotonicity ranges from 66% to
100%, no notable trend appears in the data.

If we only look at BNs that have values greater than 70% for Monotonicity,
Decomposability, and Interpretability, we see no noticeable relationship between these
values and the performance of the system. This lack of relationship is shown in figure 4.12.
In the figure the best split with sepset data is sorted in ascending order, and then graphed

vs. the corresponding monotonicity, decomposability, and interpretability.
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This data in this section shows that although monotonicity, interpretability, and
decomposability are important values, meaning they should be greater than 70%-80% for
us to expect performance greater than 90% from our system. Once they are large enough,
they are no longer the determining factor in performance.

43 IMPROVEMENTS OVER PREVIOUS WORK

Our method shows improvements over previous methods using approximation,

considering the majority of BNs appear to decompose well using our system. Our

Best Split W Sepset {sorted) VS Monotonicity, Decomposability, and Interpretability
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Figure 4.12: All BNs Best Split with Sepset (sorted) vs.
Decomposability, Monotonicity, and Interpretability

decomposition method also appears to cope better as BNs grow larger and furthermore
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does not degrade as we have seen in previous systems. Nothing can currently be said about
BN larger then 7-14 as they are to large to run. However, in future work we hope to adapt
our techniques to be able to run on much larger BNs by using sampling.

Our method also shows some improvement over typical MSBN systems as it is more
flexible. Our system can be used to decompose the system in different ways, the traditional
d-separation method does not allow for this flexibility. These positives, however, come at a
trade-off as our method uses approximation as opposed to the exact inference in MSBNS.

44 SPEED OF THE SYSTEM

A critical issue for our approach is speed. The calculation for WACMI is
exponential in nature. This is due to the calculation computing the CMI of all possible
values for the data and events, which grows exponentially as the BNs size increases. Also
our algorithm looks at all possible event and data combinations when determining the best
subproblems. Combinations grow in a factorial manor causing the other notable speed
decrease in our system. We are hoping to remedy this through the use of sampling. This is
discussed more in the next section and in the following chapter.

4.5 SAMPLING WEIGTHED AVERAGE CONDITIONAL INFORMATION

Weighted average conditional mutual information is an exponential function that

quickly becomes infeasible as the number of data and events grow. To reduce this some
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form of sampling is needed. Random sampling and then normalizing the result is the
technique chosen to accomplish this goal. Normalization must be performed because we
are trying to achieve a summation of the values and a sample will only represent a portion
of this total. Thus, the sample must then be divided by the probability of the population it
represents to make up for its proportion.

However, before any of this could be done, we first had to analyze WACMI to
determine if its CMI values formed a distribution that could be randomly sampled. The
reason this must be checked is due to the often random looking nature of BNs. Values for
CMI or the condition probabilities may be random and it would then be almost impossible,
using sampling, to get an accurate value for the overall summation of the weighted CMI
(WCMI) values. The computation for WAMCT takes the CMI value and weights it by the
probability of the conditioning occurring. In most BNs a small portion of the conditions
make up most of the probability of the system as seen in figure 4.13. Figure 4.13 is a
histogram of all the possible condition probabilities for a 5-10 BN, this shows that a small
portion of possible data values or conditions make up the bulk of the probability and they
form a distribution that should be easily sampled.

Next we must look at the distribution of the CMI values (figure 4.14). Figure 4.14
shows a histogram of all possible CMI values for one set of events in a 5-10 BN. This

figure shows that the values fall into a normal looking distribution. This is not our ideal
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distribution for our sampling, however, it is not random and as such should not skew our
sampled values of WCMI.  Lastly we must look at the a histogram of the WCMI values
(Figure 4.15) to determine if our final sampling can be performed. Figure 4.15 shows that
the WCMI values fall into a nice sharp distribution. This means that a somewhat small

sample of the population should yield accurate values for WACMI.
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Based on these findings we then moved forward with random sampling. This
changes the WACMI algorithm (algorithm 3.3). Using this calculation for WACMI with a

sample size of about 15-20% yields consistent results that vary in value little across



multiple runs. Also using this calculation yielded the same BN decompositions as the

original calculation for WACMI for all BNs that we tested it on.
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input: X, Y, C, SampSize

WACMI =0
TotProb =0
NumSamp =0

RandCond = NIL
while NumSamp < SampSize
RandCond = a random value of conditions from C
TotProb = TotProb + P(RandCond)
WACMI = WACMI + P(RandCond) * CMI(X,Y,RandCond)
NumSamp = NumSamp + 1
return WACMI / TotProb

Algorithm 4.1: Sampled WACMI
These results mean that sampling WACMI in this manner is an effective way to reduce the
runtime of our overall algorithm.

The above method does decrease the run time for WACMI significantly, however, it
does not cause the algorithm to be non-exponential. This is due to the exponential nature
of calculating CMI. Because of this we must also sample CMI. CMI must take a
summation of the values across all possible event combinations, this can be seen in
algorithm 3.2.

We solved the problem with CMI in the same manner as WACMI, through random
sampling and normalization. This changes the CMI algorithm as shown in algorithm 4.2.
Sampling CMI in this manner yields slightly less accurate values and requires a larger

percentage of the population then above (30-50%). However, using this still yields the
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same results for our decompositions.

input: X, Y, C, SampSize
MI=0
NumSamp =0
Ratio = 2"/ SampSize
RandX = NIL
RandY = NIL
while NumSamp < SampSize
RandX = random value of events from X
RandY = random value of events from Y
if P(RandX | C) =0 or P(RandX | C) = 0 or P(RandX,RandY | C) =0
MI = MI + MMI(RandX,RandY,C)
else
MI = MI + P(RandX,RandY | C) *
log, {P(RandX,RandY | C)\ [P(RandX | C) * P(RandY | C)]}
return MI * Ratio

Algorithm 4.2: Sampled CMI
The sampling approach to WACMI and CMI greatly reduces the run time of our
algorithm. It also yielded the same decompositions as the original method on all BNs that
we tested it on. This means that so far this is a viable method for calculating WACMI. In
the future, however, this may become either infeasible or inaccurate as BNs grow larger and

the proportion of the population that must be used becomes smaller.
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CHAPTER 8

FUTURE WORK

81  CHANGES TO THE ALGORITHM

8.1.1 Changes To Increase Speed

One change to the algorithm that could greatly increase its speed is to change the

way the data is decomposed. One way to decompose the data would be to look at the MI

between individual pieces of data and the events. This speeds the algorithm up two fold.

First this would eliminate the need to look over all combinations of the data, reducing this

portion of the algorithm from factorial to linear time. Second, each calculation for MI

would only have one piece of data, this would reduce the number of values that WACMI

would have to parse.

Adjusting the way data is decomposed in this manner does increase the speed

significantly, however, it is not as accurate of a calculation for MI. Because of this fact, this

method may yield worse results.

8.1.2 Changes For Implementation With Larger Bayesian Networks

The system as it stands only decomposes the BN into two subnets that can be run in

a two agent DBN type system. For larger BNs this is not a plausible approach. The
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algorithm needs to be adjusted to break the system into more subnets. An even number of

subnets seems to be a logical approach. For a 20-40 BN, decomposing it into four 5-10

networks seems reasonable.

The main difficulty in increasing the system in this fashion is determining what sets

should be connected. Also, it becomes infeasible to compute the WACMI between all the

groups as the number of possible group combinations grows in a factorial manner.

Along this same line, computing the data decomposition is also impractical as we must now

perform the calculations across a larger number of groups.

8.2  SAMPLING EVENT AND DATA SETS

Parsing over every possible data and event set is the most time consuming portion
of our algorithm. To make the procedure somewhat plausible for for larger data sets,
sampling, or some other form of approximation must be performed. The main technique
we are currently assessing to solve this problem only finds a set with a high MI, not the set
with the best MI. This means that a large sample of sets of the appropriate size could be
taken and tested for high values of MI. If a set was was found that set could be used for the
decomposition. If a set was not found, another sample could be taken and tested. This
would repeat until an adequate set was found. This technique relies mainly on the fact that
MI is the amount of “connectedness” between groups. Finding a groups with large MI

values should produce acceptable results, in theory.
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CHAPTER 9

CONCLUSIONS

WACMI is an effective measure to decompose SI BNs such that the resulting
network requires little or no communication. Greater than 90% of the networks
decomposed using WACMI performed with an accuracy over 80% while requiring no
communication. Using our algorithm, effective BN decomposition can be achieved that
does not suffer from the inflexibility of the MSBN model. These benefits come as a trade-
off with accuracy as our decomposition is only an approximation of the original BN.

In this paper we showed a new measure (WACMI) that can be used to determine the
effect of one group of variables on another in a BN. We also demonstrated an algorithm
that uses WACMI to effectively decompose an SI BN into two subproblems that require
little or no communication. We have also demonstrated various changes that can be made
to increase the speed and usefulness of the WACMI decomposition algorithm.

This work adds yet another tool in the ever expanding arsenal of techniques already
in use by scientists studying distributed sensor interpretation problems. Our algorithm has
benefits over approximation and exact inference methods. It has a flexibility that most

decomposition methods do not possess, while still representing a good approximation of
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the overall SI BN. Despite the positive aspects of the network, it still contains the main
flaw of most DSI systems, run time.

The algorithm is O(n!) where n is the number of data and events combined.
However, unlike many of the other systems it does show potential for improvement. The
calculation for WACMI and the parsing of sets can potentially be sampled. Another
potential issue is the system has yet to be tested on larger networks (> 7-14) and may be
hindered in the future by run time and communication needs. Either way weighted average

conditional mutual information is a useful formula for determining subnet interaction.
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