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Abstract

In this paper we address the question of assigning social
norms to agents: should we attempt to ascribe social norms
to agents that will act in complex dynamic environments, or
is it possible to allow the agents to adapt to new situations
as they arise, and choose their norms accordingly? We ar-
gue that adaptation is preferable to prescription, in that agents
should be allowed to revise their norms on the fly. A system is
constructed in which the performance of multiple agents op-
erating in the same environment can be assessed. Experimen-
tal results concerning alternative norm selection strategies are
presented and discussed.

Introduction
As agent designers, we want our agents to be able to oper-
ate reliably in dynamic environments. The environment may
change in ways which are not only more complex than the
agents are able to model, but also too complex to allow us to
fully predict how an agent’s actions will interact with its en-
vironment. This means that we cannot simply hard-wire pre-
programmed responses to certain situations into our agents:
rather, they have to be responsive.

This is especially true in multi-agent systems: the com-
plexity involved in attempting to foresee every possible way
that a single agent could interact with its environment clearly
increases as more agents are added to the system.

In this paper we address the question of assigning social
norms to agents: should we attempt to ascribe social norms
to agents that will act in complex dynamic environments, or
is it possible to allow the agents to adapt to new situations as
they arise, and choose their norms accordingly? We argue
that flexible adaptation is preferable to prescription: rather
than attempting to guess the norms that will be required at
run time, agent designers should allow their agents to dy-
namically revise their norms in response to changes in the
environment.

This paper is structured as follows: We begin by describ-
ing the motivation for this research. We then describe the
implementation that was carried out, as well as the results
that were achieved. Finally, we offer some conclusions that
can be drawn from this research, and suggest directions for
further research.
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Representing and Regulating Social Behaviour
Using Norms

Norms are conventions which facilitate the co-existence of
multiple agents within the same environment. For example,
when driving in the USA, it is useful to uphold the norm
of driving on the right hand side of the road. In the UK,
on the other hand, the adoption of the norm that one should
drive on the left hand side of the road is likely to prove more
beneficial.

The above example is useful as it shows that, while norms
can be essential to the successful completion of agents op-
erating within a social environment, they can also be com-
pletely arbitrary. Some countries drive on the left, while
others drive on the right; most drivers neither know nor care
why their country has adopted the norm it has chosen, and
as long as all drivers uphold the norm, it does not matter that
the individual agents do not know its origins.

The arbitrary nature of norms can be something of a
double-edged sword for agent designers. On the one hand,
norms are presented as cognitive modalities which must be
upheld, rather than justified. This can make deep modelling
and norm recognition difficult. For example, if agent A per-
ceives agent B driving on the left hand side of the road, fur-
ther contextual information is required before agent A can
determine whether or not agent B is upholding or ignoring
the relevant norms.

In this example, human agents are usually aware of which
country they are driving in, and are able to infer whether
or not other drivers are upholding norms relatively easily.
However, even reasoning that is trivial for humans can be ex-
pensive for artificial agents, both in terms of execution speed
and in terms of the extra background knowledge required.

On the other hand, the fact that rational agents can follow
norms without having to consider why they are following
them can be very useful to agent designers, as it greatly fa-
cilitates the process of norm revision. This is because the
agent designer is able to program her agents so as to benefit
from the social advantages of following norms without hav-
ing to worry about whether or not the adoption of a norm is
consistent with the agent’s existing beliefs.

Allowing agents to revise their norms on the fly allows
greater flexibility than prescribing which agents should fol-
low which norms at which time in advance, as it allows the



agents, and hence the society as a whole, to react to changes
in the environment. Except in trivial cases, the Frame Prob-
lem prevents agent designers from being able to predict ex-
actly how a complex environment will change over time.

Norm Revision and the Prisoner’s Dilemma

The Prisoner’s Dilemma is a zero-sum game, in that the aim
of the players is not to minimize the utility of their oppo-
nent, but to maximise their own utility. This means that it is
possible for both players to achieve the same utility, or for
either player to achieve higher utility than the other.

Player 2
Cooperate Defect

Cooperate 3,3 0,5Player 1
Defect 5,0 1,1

Table 1: Utilities in the Prisoner’s Dilemma

Table 1 shows the payoffs associated with the Prisoner’s
Dilemma (Sandholm 1999). In this case the payoffs repre-
sent arbitrary positive units, unlike in some versions of the
Prisoner’s Dilemma, where the payoffs represent arbitrary
negative units. This table shows that if both players coop-
erate, both players receive a utility of 3, while if Player 1
cooperates and Player 2 defects, Player 1 receives a utility
of 0 while Player 2 receives a utility of 5.

In the traditional Prisoner’s Dilemma, players play each
other once only. In the Iterated Prisoner’s Dilemma, the
same players play each other repeatedly. An interesting fac-
tor in the Iterated Prisoner’s Dilemma is that if a player con-
stantly chooses the same option, her opponent may be able
to predict what she is about to do and exploit the situation.
For example, if Player 1 constantly cooperates, and Player
2 realises this, then Player 2’s best option is to constantly
defect, as this will ensure maximum utility for Player 2.

For this reason, in the Iterated Prisoner’s Dilemma players
are not so concerned about choosing the best move in any
particular turn, but are concerned about choosing the best
strategy in order to respond to their opponent’s choices. We
therefore now turn our attention to the representation and
manipulation of social strategies in rational agents.

In (Dignum et al. 2000), Dignum et al. argue that in-
tegrating social norms into the standard BDI approach can
yield socially aware rational agents. According to the BDI
approach to agent design (Wooldridge 2000), the cognitive
functions of a rational agent are categorised into the follow-
ing three modalities:

Beliefs are facts which the agent holds which represent the
properties about the agent’s environment. Ideally, the
agent’s current belief set should be consistent.

Desires are the agent’s long term goals. There is no require-
ment that the agent’s desires should be consistent.

Intentions represent a staging post between beliefs and de-
sires, in that they represent goals or sub-goals that the
agent intends to actually bring about.

Dignum et al. argue that norms are the “glue” that bind
autonomous agents together in a multi-agent system.1 They
also say that, as circumstances within the environment and
other agents in the system may change, these norms should
not be hardwired but should be flexible.

Elsewhere we put forward an approach to belief revi-
sion in multi-agent environments based on social notions,
intentions, and constraint satisfaction (Lacey, Hexmoor, &
Beavers 2002) (Lacey & Hexmoor 2002). Our approach is
based on the coherence approach to belief revision (Doyle
1992). Thagard and Millgram (Thagard & Millgram 1997)
suggest an interesting approach to decision making based
on coherence. They define decision making as inference to
the best plan, and suggest that when people make decisions
they do so by adopting “. . . complex plans on the basis of a
holistic assessment of various competing actions and goals”

Like Thagard and Millgram, we suggest that decision
making involves complex planning based on the assessment
of competing holistic interpretations. However, whereas
Thagard and Millgram suggest a connectionist approach to
modeling this process, we have used a symbolic approach
which allows us to explicitly model and represent different
classes of belief, such as actions, perceptions, explanations,
and intentions.

Implementation and Experiments
A system in which multiple BDI agents interact was imple-
mented in SICStus Prolog (Carlsson & Widén 1993). The
graphical output reproduced in Figure 1 was produced using
the SICStus Tcl/Tk library (Almgren et al. 1993).

The experimental domain that was chosen was based on
the concept of agents delivering goods in a city. The num-
ber of completed journeys made by each agent is recorded,
as is the total number of journeys made by all the agents.
The efficiency of an individual agent is measured in terms
of the number of journeys it is able to complete, while the
efficiency of the entire system is measured in terms of the
total number of journeys that are completed.

As shown in Figure 1, the environment is composed of 8
terminals, labeled as t1 . . .t8, and 4 junctions, labeled j1
. . .j4. At each junction an East-West road crosses a North-
South road. The junction is controlled by a traffic signal
which allows traffic to flow either East-West or North-South.
The bars at each junction show the direction that traffic is
allowed to flow. For example, when the environment is in
the state shown in Figure 1, traffic is flowing North-South
and j1 and j2, and East-West at j3 and j4.

Agents start out at randomly assigned terminals, and
must make their way to another randomly assigned termi-
nal. Depth-first search is used to find a suitable route from
one terminal to another.

When an agent reaches a junction which is blocked to traf-
fic coming from its direction, the correct course of action is
of course for the agent to stop and wait for the signal to
change. Whether or not the agent acts in this ways depends

1Dignum et al. actually consider both norms and obligations.
For the sake of simplicity we have considered obligations to be
implicit as far as this paper is concerned.
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Figure 1: The Experimental Domain

upon the norm that it is following. There are two norms that
agents may adopt, which we have labeled cooperate and de-
fect:

Cooperate The agent obeys all traffic signals. The journey
of a cooperating agent will usually take longer than that
of a defecting agent, as cooperating agents have to wait
for the signals to change before proceeding.

Defect The agent completely disregards all traffic signals.
Defecting agents usually complete journeys faster than
cooperating agents. However, defecting agents can cause
consequences that are detrimental to the community as a
whole.

As defecting agents ignore traffic signals, there is a
chance that a defecting agent will go through a stop signal,
and will collide with another agent. Collisions have two con-
sequences:

Individual Penalty The agent that caused the collision,
that is, the agent that disobeyed the stop signal, remains
stopped for the duration of the penalty. The innocent party
involved in the collision is not affected by this penalty.

Group Penalty The entire junction where the collision oc-
curred is closed for the duration of the penalty.

Parameter Value
Number of Agents 50
Number of Timeslices 1000
Group Penalty 25
Individual Penalty 25
Signal on Red(%) (NS,EW) 50,50

Table 2: Summary of Experimental Parameters

The values of these penalties, as well as of the other major
parameters used for the experiments described in this paper
are summarised in Table 2. The values next to ’Signal on
Red’ refer to the percentage of timeslices when any given

traffic signal will be red for traffic traveling North-South
and East-West. The value of (50,50) means that each sig-
nal allows traffic to flow North-South for 50 timeslices, and
then allows traffic to flow East-West for 50 timeslices. Right
turns on red are not permitted.

Experiments
Given the parameters summarised in, Table 2, the obvious
question to consider is, out of the 50 agents in the environ-
ment, how many should be cooperating?

If too many agents are cooperating, there will be no col-
lisions and hence no penalties, but most of the agents will
spend too much time waiting at traffic signals. On the other
hand, if too few of the agents are cooperating, there will be
many collisions and penalties, resulting in junctions being
closed to all agents. In this section we investigate differ-
ent norm selection strategies, and examine how many jour-
neys are completed under each strategy. The norm selection
strategies we examine are:

1. Prescriptive Cooperation

2. Prescriptive Defection

3. Adaptive Convergence

4. Adaptive Divergence

Table 3 shows the utilities that would be exhibited by
an agent operating in this environment in various circum-
stances. A ’+’ indicates a probable increase in performance,
whereas a ’-’ indicates a probable decrease in performance.
A ’0’ indicates that there will probably be no significant
change in performance.

Group
Cooperate Defect

Cooperate -,0 +,+Individual
Defect +,0 -,-

Table 3: Individual and Group Utilities for the Delivery Sce-
nario

If the majority of agents are cooperating, then an individ-
ual agent will probably harm its performance by cooperat-
ing. This is because the chances of its being involved in a
collision are small compared to the significantly decreased
journey time. Similarly, the effects on the group’s perfor-
mance of one agent defecting or cooperating will probably
not be significant if the majority of agents are cooperating.

On the other hand, if the majority of agents are defecting,
then the society as a whole has problems, as there will be
a high likelihood of collisions, which will adversely affect
global performance. In this situation, both individual and
society as a whole will probably benefit from the coopera-
tion of the individual, as this could be the first step in a move
from anarchy to order.

The major difference between the situation reflected in
Table 3 and the traditional Prisoner’s Dilemma summarised
in Table 1 is that the Prisoner’s Dilemma involves the in-
teraction of one agent with one other agent, while Table 3



shows the utilities that an individual agent would exhibit
when interacting with a community of agents. The asym-
metries in this table stem from the fact that an individual
is nonetheless part of the group. As such, if the actions of
the individual adversely affect the performance of the group,
then its actions will ultimately adversely affect its own per-
formance as well.

Another difference between the Prisoner’s Dilemma sce-
nario and Table 3 is that in the Prisoner’s Dilemma, the re-
sults of an agent’s choice of strategy are detectable immedi-
ately, while in this situation the effects of an agent moving
from a cooperating norm to a defecting norm in the deliv-
ery environment may not become apparent for several times-
lices.

Despite these differences, both tables represent a zero-
sum situation in which the goal of the participating agent
is to maximise its utility rather than minimising the utility of
the other agents in its environment.

Prescriptive Cooperation Under this strategy, all agents in
the system cooperate all the time. This means that all
agents will always stop for red lights, and as such there
will be no collisions.

Prescriptive Defection Under this strategy, all agents de-
fect all the time. This means that no agents will stop for
red lights. As such some collisions are to be expected.

Adaptive Convergence Agents whose performance is
lower than average defect, while those whose perfor-
mance is higher than average cooperate. This strategy
was named to reflect the fact that under-performing
agents would defect, and hence be able to complete their
journeys more quickly. Once their performance had
exceeded that of the system average, they would revert
to a cooperative norm. This will result in the relative
performance of individual agents converging towards the
average over time, with little variation in the performance
of individual agents.

Adaptive Divergence Under this strategy, agents whose
performance is higher than average defect, while those
whose performance is lower than average cooperate. This
means that agents who are performing well will continue
to defect and probably perform well, while those who are
performing poorly will continue to cooperate. This will
result in the relative performance of individual agents di-
verging from the average performance over time. This
means that we can expect that systems operating on a di-
vergent strategy would show more variation in the per-
formance of individual agents than would be present in
systems operating under a convergent strategy.

Results
Table 4 summarises the results that were obtained from these
experiments. The ”Journeys” column lists the total number
of journeys achieved under the various strategies. The third
column lists the Standard Deviation (σ) of the number of
journeys completed for each agent, while the fourth column
lists the number of collisions that were recorded under each
strategy.

The first result to note is that the number of completed
journeys is higher when the agents are able to revise their
norms, as they are under the Convergent and Divergent
strategies, than when all agents are either cooperating or de-
fecting.

As would be expected, if all the agents in the system are
cooperating, there are no collisions and hence no penalties,
but the amount of time that the agents spend waiting at traffic
signals results in fewer completed journeys than result from
the alternative strategies.

Norm Journeys σ Collisions
Cooperate 360 0.41 0
Defect 372 0.48 100
Convergent 391 0.41 38
Divergent 390 0.54 26

Table 4: Summary of Results

On the other hand, if all the agents are defecting, the
agents might be able to finish they journeys more quickly,
but there is a much greater chance of collision: 0.29 colli-
sions per completed journey. Also, the fact that the standard
deviation is higher for the defect strategy than for the coop-
erate strategy shows that the variation in the level of perfor-
mance is higher for the defect strategy.

These results show that the adaptive strategies performed
better than the prescriptive strategies. Both the Convergent
and Divergent strategies resulted in a higher number of com-
pleted journeys that the prescriptive strategies, and fewer
collisions than the Defect strategy. The Convergent strategy
averaged 0.10 collisions per completed journey, while the
Divergent strategy averaged 0.07 collisions per completed
journey.

Figure 2: The Number of Cooperating Agents Over Time

Thus, under the adaptive strategies, the agents are able
to revise their norms in response to changes in the environ-
ment. Figure 2 shows the number of cooperating agents over
time for both the Convergent and the Divergent strategies.

This figure shows that under both strategies, there is ini-
tially considerable variation in the number of cooperating
agents, but this variation gradually subsides over time, lead-
ing to a more stable environment. Thus, around the 200th



timeslice, the number of cooperating agents goes from 10 to
42 in the Divergent strategy, but by the 900th timeslice, the
change is from 25 to 32.

Figure 3: The Total Number of Journeys Completed Under
Different Strategies

While the number of Cooperating agents varies over time,
the rate of increase in the number of journeys remains rela-
tively constant. Figure 3 shows the total number of journeys
over time for all four strategies. While this figure is useful
in that it shows that the rate of change is relatively constant
over time, we appreciate that due to the similarity in the re-
sults for the four strategies, the figure is not particularly in-
formative beyond this. For this reason we have also included
Figure 4, which concentrates only on the final 300 timeslices
of Figure 3.

Figure 4: A Summary of Figure 3 Emphasising the Differ-
ences in Performance Between the Various Strategies

Figure 3, in conjunction with Table 4, shows that the two
adaptive strategies perform better than the two prescriptive
strategies.

Conclusions and Further Work
In this paper we have argued that the representation of social
norms within the knowledge base of an agent which is to act
within a multi-agent system allows the system designer to
control the social behaviour of the agents in the system.

We have also argued that in some situations it is more
efficient to allow the agents in the system to adapt to new

situations by revising their norms as appropriate, than it is to
attempt to prescribe norm adherence at design time. We de-
scribe the implementation and testing of a system in which
multiple BDI agents capable of norm revision interact. Ex-
perimental results show that in some circumstances adap-
tive norm revision strategies perform better than prescriptive
norm assignment at design time.

We do not, however, claim that this will always be the
case, as there will be situations in which agents should not
be able to revise their norms. For example, in safety critical
systems, we may wish to be able to predict exactly what
an agent will do in a given situation, without giving it the
freedom to change its behaviour as it sees fit.

The next stage in this research is therefore to conduct fur-
ther experiments in an attempt to identify situations in which
norms should be prescribed at run time, and when adaptive
norm selection should be used.
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